Trans-complementation by human apurinic endonuclease (Ape) of hypersensitivity to DNA damage and spontaneous mutator phenotype in apn1-yeast.
نویسندگان
چکیده
Abasic (AP) sites in DNA are potentially lethal and mutagenic. 'Class II' AP endonucleases initiate the repair of these and other DNA lesions. In yeast, the predominant enzyme of this type is Apn1, and its elimination sensitizes the cells to killing by simple alkylating agents or oxidants, and raises the rate of spontaneous mutation. We investigated the ability of the major human class II AP endonuclease, Ape, which is structurally unrelated to Apn1, to replace the yeast enzyme in vivo. Confocal immunomicroscopy studies indicate that approximately 25% of the Ape expressed in yeast is present in the nucleus. High-level Ape expression corresponding to approximately 7000 molecules per nucleus, equal to the normal Apn1 copy number, restored resistance to methyl methanesulfonate to near wild-type levels in Apn1-deficient (apn1-) yeast. Ape expression in apn1- yeast provided little protection against H2O2 challenges, consistent with the weak 3'-repair diesterase activity of the human enzyme. Ape expression at approximately 2000 molecules per nucleus reduced the spontaneous mutation rate of apn1- yeast to that seen for wild-type cells. Because Ape has a powerful AP endonuclease but weak 3'-diesterase activity, these findings indicate that endogenously generated AP sites can drive spontaneous mutagenesis.
منابع مشابه
Specificity of the mutator caused by deletion of the yeast structural gene (APN1) for the major apurinic endonuclease.
The loss of bases from cellular DNA occurs via both spontaneous and mutagen-induced reactions. The resulting apurinic/apyrimidinic (AP) sites are cytotoxic and mutagenic but are counteracted by repair initiated by AP endonucleases. Previously, in vitro and bacterial transfection studies suggested that AP sites often prompt insertion of dAMP residues during replication, the A-rule. Dissimilar re...
متن کاملOverlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae.
The removal of oxidative damage from Saccharomyces cerevisiae DNA is thought to be conducted primarily through the base excision repair pathway. The Escherichia coli endonuclease III homologs Ntg1p and Ntg2p are S. cerevisiae N-glycosylase-associated apurinic/apyrimidinic (AP) lyases that recognize a wide variety of damaged pyrimidines (H. J. You, R. L. Swanson, and P. W. Doetsch, Biochemistry ...
متن کاملYeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV.
DNA damage generated by oxygen radicals includes base-free apurinic/apyrimidinic (AP) sites and strand breaks that bear deoxyribose fragments. The yeast Saccharomyces cerevisiae repairs such DNA lesions by using a single major enzyme. We have cloned the yeast structural gene (APN1) encoding this AP endonuclease/3'-repair diesterase by immunological screening of a yeast genomic DNA expression li...
متن کاملExpression of yeast apurinic/apyrimidinic endonuclease (APN1) protects lung epithelial cells from bleomycin toxicity.
Bleomycin is a well-established anti-tumor drug. Its major untoward effect, pulmonary toxicity, has limited its usage. In this study, we used a DNA repair protein, yeast apurinic/apyrimidinic endonuclease (APN1) to reduce the toxicity of bleomycin on lung cells. A549 cells, an alveolar epithelial cell line, were transduced by MIEG3 retroviral vector encoding both enhanced green fluorescent prot...
متن کاملRelationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 23 24 شماره
صفحات -
تاریخ انتشار 1995