Quantum de Finetti Theorem under Fully-One-Way Adaptive Measurements.
نویسندگان
چکیده
We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well approximated as a probabilistic mixture of multifold product states. The approximation is measured by distinguishability under measurements that are implementable by fully-one-way local operations and classical communication (LOCC). Our result strengthens Brandão and Harrow's de Finetti theorem where a kind of partially-one-way LOCC measurements was used for measuring the approximation, with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm which detects multipartite entanglement with an amount larger than an arbitrarily small constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations.
منابع مشابه
A simple proof of Renner’s exponential de Finetti theorem
In quantum information theory a de Finetti theorem expresses the fact that a quantum state ρ ∈ (Cd)⊗n that is invariant under permutation of its n subsystems is close to a mixture of tensor product states. The first such result is due to de Finetti [3], who showed that any classical distribution that is infinitely exchangeable can be expressed as a convex combination of product distributions. M...
متن کاملDe Finetti Theorems for Easy Quantum Groups
We study sequences of noncommutative random variables which are invariant under “quantum transformations” coming from an orthogonal quantum group satisfying the “easiness” condition axiomatized in our previous paper. For 10 easy quantum groups, we obtain de Finetti type theorems characterizing the joint distribution of any infinite, quantum invariant sequence. In particular, we give a new and u...
متن کاملSecurity of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space
Proving the unconditional security of quantum key distribution (QKD) is a highly challenging task as one needs to determine the most efficient attack compatible with experimental data. This task is even more demanding for continuous-variable QKD as the Hilbert space where the protocol is described is infinite dimensional. A possible strategy to address this problem is to make an extensive use o...
متن کاملUnknown Quantum States and Operations, a Bayesian View
The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this paper, we motivate and review two results that generalize de Finetti’s theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum s...
متن کاملUnknown Quantum States: The Quantum de Finetti Representation
We present an elementary proof of the quantum de Finetti representation theorem, a quantum analogue of de Finetti’s classical theorem on exchangeable probability assignments. This contrasts with the original proof of Hudson and Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced mathematics and does not share the same potential for generalization. The classical de Finetti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 114 16 شماره
صفحات -
تاریخ انتشار 2015