Sensory Experience Restructures Thalamocortical Axons during Adulthood
نویسندگان
چکیده
The brain's capacity to rewire is thought to diminish with age. It is widely believed that development stabilizes the synapses from thalamus to cortex and that adult experience alters only synaptic connections between cortical neurons. Here we show that thalamocortical (TC) inputs themselves undergo massive plasticity in adults. We combined whole-cell recording from individual thalamocortical neurons in adult rats with a recently developed automatic tracing technique to reconstruct individual axonal trees. Whisker trimming substantially reduced thalamocortical axon length in barrel cortex but not the density of TC synapses along a fiber. Thus, sensory experience alters the total number of TC synapses. After trimming, sensory stimulation evoked more tightly time-locked responses among thalamorecipient layer 4 cortical neurons. These findings indicate that thalamocortical input itself remains plastic in adulthood, raising the possibility that the axons of other subcortical structures might also remain in flux throughout life.
منابع مشابه
The Histological Evidences for Developmental Alternations in the Transmitting Time of Impulses along the Thalamocortical Tract
Change in transmitting time of impulses along axons is traditionally attributed to two parameters: the myelin formation and the diameter of neurite, both rising during the postnatal development. In the previous study, we showed that conduction velocity of the fibers projecting from the thalamus to the layer IV of the somatosensory (barrel) cortex increases as a function of age. However, the con...
متن کاملCardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood
Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a crit...
متن کاملCortex is driven by weak but synchronously active thalamocortical synapses.
Sensory stimuli reach the brain via the thalamocortical projection, a group of axons thought to be among the most powerful in the neocortex. Surprisingly, these axons account for only approximately 15% of synapses onto cortical neurons. The thalamocortical pathway might thus achieve its effectiveness via high-efficacy thalamocortical synapses or via amplification within cortical layer 4. In rat...
متن کاملDevelopment of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- and parvalbumin-containing neurons.
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is thought to play an important role in activity-dependent stages of brain development. Previous studies have shown that different functional subclasses of cortical GABA-containing neurons can be distinguished by antibodies to the calcium-binding proteins parvalbumin and calbindin. Thus insight into the development of distinct subse...
متن کاملCross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections.
The development of the different, highly specialized regions of the mammalian cerebral cortex depends in part on neural activity, either intrinsic spontaneous activity or externally driven sensory activity. To determine whether patterned sensory activity instructs the development of intrinsic cortical circuitry, we have experimentally altered the modality of sensory inputs to cerebral cortex. N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 74 شماره
صفحات -
تاریخ انتشار 2012