Multiplicative Update Rules for Incremental Training of Multiclass Support Vector Machines.dvi

نویسندگان

  • Symeon Nikitidis
  • Nikos Nikolaidis
  • Ioannis Pitas
چکیده

We present a new method for the incremental training of multiclass Support Vector Machines that can simultaneously modify each class separating hyperplane and provide computational efficiency for training tasks where the training data collection is sequentially enriched and dynamic adaptation of the classifier is required over time. An auxiliary function has been designed, that incorporates some desired characteristics in order to provide an upper bound for the objective function, which summarizes the multiclass classification task. A novel set of multiplicative update rules is proposed, which is independent from any kind of learning rate parameter, provides computational efficiency compared to the conventional batch training approach and is easy to implement. Convergence to the global minimum is guaranteed, since the optimization problem is convex and the global minimizer for the enriched dataset is found using a warm-start algorithm. Experimental evidence on various data collections verified that our method is faster than retraining the classifier from scratch, while the achieved classification accuracy rate is maintained at the same level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative update rules for incremental training of multiclass support vector machines

We present a new method for the incremental training of multiclass support vector machines that can simultaneously modify each class separating hyperplane and provide computational efficiency for training tasks where the training data collection is sequentially enriched and dynamic adaptation of the classifier is required over time. An auxiliary function has been designed, that incorporates som...

متن کامل

Incremental training of support vector machines using hyperspheres

In the conventional incremental training of support vector machines, candidates for support vectors tend to be deleted if the separating hyperplane rotates as the training data are added. To solve this problem, in this paper, we propose an incremental training method using one-class support vector machines. First, we generate a hypersphere for each class. Then, we keep data that exist near the ...

متن کامل

Multiclass Road Sign Detection using Multiplicative Kernel

We consider the problem of multiclass road sign detection using a classification function with multiplicative kernel comprised from two kernels. We show that problems of detection and within-foreground classification can be jointly solved by using one kernel to measure object-background differences and another one to account for within-class variations. The main idea behind this approach is tha...

متن کامل

Logistic Online Learning Methods and Their Application to Incremental Dependency Parsing

We investigate a family of update methods for online machine learning algorithms for cost-sensitive multiclass and structured classification problems. The update rules are based on multinomial logistic models. The most interesting question for such an approach is how to integrate the cost function into the learning paradigm. We propose a number of solutions to this problem. To demonstrate the a...

متن کامل

Ensembles of Partially Trained SVMs with Multiplicative Updates

The training of support vector machines (SVM) involves a quadratic programming problem, which is often optimized by a complicated numerical solver. In this paper, we propose a much simpler approach based on multiplicative updates. This idea was first explored in [Cristianini et al., 1999], but its convergence is sensitive to a learning rate that has to be fixed manually. Moreover, the update ru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011