Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

نویسندگان

  • Qiang Li
  • Maojun Zheng
  • Miao Zhong
  • Liguo Ma
  • Faze Wang
  • Li Ma
  • Wenzhong Shen
چکیده

Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Si Photocathode Protected and Activated with a Ti and Ni Composite Film for Solar Hydrogen Production

An efficient, stable and scalable hybrid photoelectrode for visible-light-driven H2 generation in an aqueous pH 9.2 electrolyte solution is reported. The photocathode consists of a p-type Si substrate layered with a Ti and Ni-containing composite film, which acts as both a protection and electrocatalyst layer on the Si substrate. The film is prepared by the simple drop casting of the molecular ...

متن کامل

p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production.

Water splitting by using sunlight for the production of hydrogen yields a storable product, which can be used as a fuel. There is considerable research into H2 generation, namely the reduction of protons to H2 in aqueous solution using semiconductor photocathodes. To maximize the photoelectrochemical (PEC) performance, the selection of the active materials and device configurations should be ca...

متن کامل

Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approa...

متن کامل

Thermoeconomic analysis of a hybrid PVT solar system integrated with double effect absorption chiller for cooling/hydrogen production

A novel solar-based combined system which is consisting of a concentrated PV, a double effect LiBr-H2O absorption chiller, and a Proton Exchange Membrane (PEM) is proposed for hydrogen production. A portion of the received energy is recovered to run a double effect absorption chiller and the rest is turned into electricity, being consumed in the PEM electrolyzer for hydrogen producti...

متن کامل

Role of TiO2 Surface Passivation on Improving the Performance of p‐InP Photocathodes

The role of TiO2 thin films deposited by atomic layer deposition on p-InP photocathodes used for solar hydrogen generation was examined. It was found that, in addition to its previously reported corrosion protection role, the large valence band offset between TiO2 and InP creates an energy barrier for holes reaching the surface. Also, the conduction band of TiO2 is well-aligned with that of InP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016