A Multi-level Technique for the Approximate Solution of Opertaor Lyapunov and Riccati Equations
نویسنده
چکیده
We consider multi-grid, or more appropriately, multi-level techniques for the numerical solution of operator Lyapunov and algebraic Riccati equations. The Riccati equation, which is quadratic, plays an essential role in the solution of linear-quadratic optimal control problems. The linear Lyapunov equation is important in the stability theory for linear systems and its solution is the primary step in the Newton-Kleinman algorithm for the solution of algebraic Riccati equations. Both equations are operator equations when the underlying linear system is in nite dimensional. In this case, nite dimensional discretization is required. However, as the level of discretization increases, the convergence rate of the standard iterative techniques for solving high order matrix Lyapunov and Riccati equations decreases. To deal with this, multi-leveling is introduced into the iterative Newton-Kleinman method for solving the algebraic Riccati equation, and Smith's method for solving matrix Lyapunov equations. Theoretical results and analysis indicating why the technique yields a signi cant improvement in e ciency over existing non-multi-grid techniques are provided, and the results of numerical studies on a test problem involving the optimal linear quadratic control of a one dimensional heat equation are discussed. This author was supported in part by the Air Force O ce of Scienti c Research under grant AFOSR 91-0076. This author was supported in part by the Air Force O ce of Scienti c Research under grant AFOSR 90-0091, and in part by a grant from the University of Southern California Faculty Research and Innovation Fund.
منابع مشابه
A Multi - Level Technique for the Approximate Solution of Operator Lyapunov andAlgebraic Riccati
We consider multi-grid, or more appropriately, multi-level techniques for the numerical solution of operator Lyapunov and algebraic Riccati equations. The Riccati equation, which is quadratic, plays an essential role in the solution of linear-quadratic optimal control problems. The linear Lyapunov equation is important in the stability theory for linear systems and its solution is the primary s...
متن کاملOptimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations
In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...
متن کاملOptimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کامل