Coverage prediction and optimization algorithms for indoor environments
نویسندگان
چکیده
A heuristic algorithm is developed for the prediction of indoor coverage. Measurements on one floor of an office building are performed to investigate propagation characteristics and validations with very limited additional tuning are performed on another floor of the same building and in three other buildings. The prediction method relies on the free-space loss model for every environment, this way intending to reduce the dependency of the model on the environment upon which the model is based, as is the case with many other models. The applicability of the algorithm to a wireless testbed network with fixed WiFi 802.11b/g nodes is discussed based on a site survey. The prediction algorithm can easily be implemented in network planning algorithms, as will be illustrated with a network reduction and a network optimization algorithm. We aim to provide an physically intuitive, yet accurate prediction of the path loss for different building types.
منابع مشابه
A Survey of Network Coverage Prediction Mechanisms in 4G Heterogeneous Wireless Networks
Seamless connectivity in 4G wireless networks requires the development of intelligent proactive mechanisms for efficiently predicting vertical handovers. Random device mobility patterns further increase the complexity of the handover process. Geographical topologies such as indoor and outdoor environments also exert additional constraints on network coverage and device mobility. The ability of ...
متن کاملA Comprehensive Propagation Prediction Model Comprising Microfacet Based Scattering and Probability Based Coverage Optimization Algorithm
Although ray tracing based propagation prediction models are popular for indoor radio wave propagation characterization, most of them do not provide an integrated approach for achieving the goal of optimum coverage, which is a key part in designing wireless network. In this paper, an accelerated technique of three-dimensional ray tracing is presented, where rough surface scattering is included ...
متن کاملChaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملNeural Network Prediction of Signal Strength for Irregular Indoor Environments
A neural-network based approach for modelling propagation inside complex indoor environments is presented. Selection of the neural network model, initialization, and training and performance evaluation are studied in details. Furthermore, in order to determine optimal access point arrangement the neural network propagation model is merged with the particle swarm optimization method. In the case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012