Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability.
نویسندگان
چکیده
BACKGROUND Although in situ pathological studies and in vivo magnetic resonance (MR) investigations have shown that axonal injury can be significant in the early stages of multiple sclerosis (MS), diffuse axonal injury is generally considered a secondary event. Cerebral axonal damage can be specifically assessed in vivo by measuring levels of brain N-acetylaspartate (NAA, a specific index of axonal integrity detected by MR spectroscopy). Other new MR measurements such as magnetization transfer ratio (MTr) or computed estimation of brain volume can provide less specific indexes of tissue damage. OBJECTIVE To determine whether diffuse axonal and tissue injury is present in patients with definite MS who do not show clinically significant disability. METHODS We measured brain NAA levels (normalized to creatine [Cr]), MTr values, and cerebral volumes in patients with definite MS who had low T2-weighted MR imaging lesion volumes and no clinical disability, and also in age-matched healthy control subjects. RESULTS Values of central brain NAA/Cr and MTr in normal-appearing white matter were significantly lower in the MS patients than in controls (P<.001). In contrast, total brain volumes were not significantly different between these groups. Similar results were found for MS patients with early disease (duration, <3 years) and with a particularly low cerebral T2-weighted MR imaging lesion load (< or = 2 cm(3)). CONCLUSIONS Cerebral NAA/Cr and MTr values are diffusely decreased in MS patients with early disease, low demyelinating lesion load, and no significant disability. This suggests that axonal and/or tissue injury begins very early in the course of MS and might be at least partially independent of cerebral demyelination.
منابع مشابه
Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis.
Previous imaging studies have suggested that there is substantial axonal loss in the normal-appearing white matter (NAWM) of brains from multiple sclerosis patients and that this axonal loss may be an important determinant of disability. Recently, substantial axonal loss in the NAWM has been confirmed directly in post-mortem tissue. Whether the NAWM changes occur as a consequence of damage to a...
متن کاملCortical demyelination and diffuse white matter injury in multiple sclerosis.
Focal demyelinated plaques in white matter, which are the hallmark of multiple sclerosis pathology, only partially explain the patient's clinical deficits. We thus analysed global brain pathology in multiple sclerosis, focusing on the normal-appearing white matter (NAWM) and the cortex. Autopsy tissue from 52 multiple sclerosis patients (acute, relapsing-remitting, primary and secondary progres...
متن کاملQuantitative diVusion weighted magnetic resonance imaging, cerebral atrophy, and disability in multiple sclerosis
Objectives—To investigate the relations between quantitative diVusion coeYcient MRI histograms, clinical variables, and cerebral atrophy. Methods—Twenty two patients with clinically definite multiple sclerosis and 11 healthy volunteers were studied. Histograms of apparent diVusion coeYcient (ADC) from a volume of interest that included multiple slices encompassing the lateral ventricles were pr...
متن کاملP 153: Neuroinflammation in Multiple Sclerosis
Multiple sclerosis (MS) is a complex disease which is correlated with increasing inflammatory factors, demyelination and axonal loss. In this auto-immune disease, Neuroinflammation is mediated by different types of T cells with macrophage/microglial activation and B cells involvement that interact in a collaborative manner. Focal inflammation is the main cause for the onset of relapses and coul...
متن کاملEvidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis.
Axonal injury occurs even in the earliest stages of multiple sclerosis. Magnetic resonance spectroscopic imaging (MRSI) measurements of brain N:-acetylaspartate (NAA), a marker of axonal integrity, show that this axonal injury can occur even in the absence of clinically evident functional impairments. To test whether cortical adaptive responses contribute to the maintenance of normal motor func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of neurology
دوره 59 10 شماره
صفحات -
تاریخ انتشار 2002