Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions
نویسنده
چکیده
We present a new methodology for proving security of encryption systems using what we call Dual System Encryption. Our techniques result in fully secure Identity-Based Encryption (IBE) and Hierarchical Identity-Based Encryption (HIBE) systems under the simple and established decisional Bilinear Diffie-Hellman and decisional Linear assumptions. Our IBE system has ciphertexts, private keys, and public parameters each consisting of a constant number of group elements. These results are the first HIBE system and the first IBE system with short parameters under simple assumptions. In a Dual System Encryption system both ciphertexts and private keys can take on one of two indistinguishable forms. A private key or ciphertext will be normal if they are generated respectively from the system’s key generation or encryption algorithm. These keys and ciphertexts will behave as one expects in an IBE system. In addition, we define semi-functional keys and ciphertexts. A semi-functional private key will be able to decrypt all normally generated ciphertexts; however, decryption will fail if one attempts to decrypt a semi-functional ciphertext with a semi-functional private key. Analogously, semi-functional ciphertexts will be decryptable only by normal private keys. Dual System Encryption opens up a new way to prove security of IBE and related encryption systems. We define a sequence of games where we change first the challenge ciphertext and then the private keys one by one to be semi-functional. We finally end up in a game where the challenge ciphertext and all private keys are semi-functional at which point proving security is straightforward. ∗Supported by NSF CNS-0716199, Air Force Office of Scientific Research (AFOSR) under the MURI award for “Collaborative policies and assured information sharing” (Project PRESIDIO) and the U.S. Department of Homeland Security under Grant Award Number 2006-CS-001-000001.
منابع مشابه
New Techniques for Dual System Encryption and Fully Secure HIBE with Short Ciphertexts
We construct a fully secure HIBE scheme with short ciphertexts. The previous construction of Boneh, Boyen, and Goh was only proven to be secure in the selective model, under a non-static assumption which depended on the depth of the hierarchy. To obtain full security, we apply the dual system encryption concept recently introduced by Waters. A straightforward application of this technique is in...
متن کاملAnonymous Constant-Size Ciphertext HIBE from Asymmetric Pairings
We present a new hierarchical identity based encryption (HIBE) scheme with constant-size ciphertext that can be implemented using the most efficient bilinear pairings, namely, Type-3 pairings. In addition to being fully secure, our scheme is anonymous. The HIBE is obtained by extending an asymmetric pairing based IBE scheme due to Lewko and Waters. The extension uses the approach of Boneh-Boyen...
متن کاملFrom Selective IBE to Full IBE and Selective HIBE
Starting with any selectively secure identity-based encryption (IBE) scheme, we give generic constructions of fully secure IBE and selectively secure hierarchical IBE (HIBE) schemes. Our HIBE scheme allows for delegation arbitrarily many times.
متن کاملNew Techniques for Dual System Encryption and Fully Secure HIBE with Short Ciphertexts
We construct a fully secure HIBE scheme with short ciphertexts. The previous con-struction of Boneh, Boyen, and Goh was only proven to be secure in the selective model,under a non-static assumption which depended on the depth of the hierarchy. To obtainfull security, we apply the dual system encryption concept recently introduced by Waters.A straightforward application of this t...
متن کاملVariants of Waters’ Dual-System Primitives Using Asymmetric Pairings
Waters, in 2009, introduced an important technique, called dual-system encryption, to construct identity-based encryption (IBE) and related schemes. The resulting IBE scheme was described in the setting of symmetric pairing. A key feature of the construction is the presence of random tags in the ciphertext and decryption key. Later work by Lewko and Waters has removed the tags and proceeding th...
متن کامل