Developing improved MD codes for understanding processive cellulases

نویسندگان

  • M F Crowley
  • E C Uberbacher
  • M E Himmel
چکیده

The mechanism of action of cellulose-degrading enzymes is illuminated through a multidisciplinary collaboration that uses molecular dynamics (MD) simulations and expands the capabilities of MD codes to allow simulations of enzymes and substrates on petascale computational facilities. There is a class of glycoside hydrolase enzymes called cellulases that are thought to decrystallize and processively depolymerize cellulose using biochemical processes that are largely not understood. Understanding the mechanisms involved and improving the efficiency of this hydrolysis process through computational models and protein engineering presents a compelling grand challenge. A detailed understanding of cellulose structure, dynamics and enzyme function at the molecular level is required to direct protein engineers to the right modifications or to understand if natural thermodynamic or kinetic limits are in play. Much can be learned about processivity by conducting carefully designed molecular dynamics (MD) simulations of the binding and catalytic domains of cellulases with various substrate configurations, solvation models and thermodynamic protocols. Most of these numerical experiments, however, will require significant modification of existing code and algorithms in order to efficiently use current (terascale) and future (petascale) hardware to the degree of parallelism necessary to simulate a system of the size proposed here. This work will develop MD codes that can efficiently use terascale and petascale systems, not just for simple classical MD simulations, but also for more advanced methods, including umbrella sampling with complex restraints and reaction coordinates, transition path sampling, steered molecular dynamics, and quantum mechanical/molecular mechanical simulations of systems the size of cellulose degrading enzymes acting on cellulose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product binding varies dramatically between processive and nonprocessive cellulase enzymes.

Cellulases hydrolyze β-1,4 glycosidic linkages in cellulose, which are among the most prevalent and stable bonds in Nature. Cellulases comprise many glycoside hydrolase families and exist as processive or nonprocessive enzymes. Product inhibition negatively impacts cellulase action, but experimental measurements of product-binding constants vary significantly, and there is little consensus on t...

متن کامل

Synergistic Cellulose Hydrolysis Dominated by a Multi-Modular Processive Endoglucanase from Clostridium cellulosi

Recalcitrance of biomass feedstock remains a challenge for microbial conversion of lignocellulose into biofuel and biochemicals. Clostridium cellulosi, one thermophilic bacterial strain dominated in compost, could hydrolyze lignocellulose at elevated temperature by secreting more than 38 glycoside hydrolases belong to 15 different families. Though one multi-modular endoglucanase CcCel9A has bee...

متن کامل

Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution.

BACKGROUND Enzymatic hydrolysis of cellulose involves the spatiotemporally correlated action of distinct polysaccharide chain cleaving activities confined to the surface of an insoluble substrate. Because cellulases differ in preference for attacking crystalline compared to amorphous cellulose, the spatial distribution of structural order across the cellulose surface imposes additional constrai...

متن کامل

Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.

In nature, processive and non-processive cellulase enzymes deconstruct cellulose to soluble sugars. From structural studies, the consensus is that processive cellulases exhibit tunnels lined with aromatic and polar residues, whereas non-processive cellulases exhibit open clefts with fewer ligand contacts. To gain additional insight into the differences between processive and non-processive cell...

متن کامل

A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca.

Lignocellulosic biomass is digested in nature by the synergistic activities of enzymes with complementary properties, and understanding synergistic interactions will improve the efficiency of industrial biomass use for sustainable fuels and chemicals. Cel9A and Cel48A from a model bacterium, Thermobifida fusca (TfCel9A and TfCel48A, respectively), are two cellulases with different properties an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008