Determination of Algorithms Making Balance Between Accuracy and Comprehensibility in Churn Prediction Setting
نویسندگان
چکیده
Predictive modeling is a useful tool for identifying customers who are at risk of churn. An appropriate churn prediction model should be both accurate and comprehensible. However, reviewing the past researches in this context shows that much attention is paid to accuracy of churn prediction models than comprehensibility of them. This paper compares three different rule induction techniques from three categories of rule based classifiers in churn prediction context. Furthermore logistic regression (LR) and additive logistic regression (ALR) are used. After parameter setting, eight distinctive algorithms, namely C4.5, C4.5 CP, RIPPER, RIPPER CP, PART, PART CP, LR, and ALR, are obtained. These algorithms are applied on an original training set with the churn rate of 30% and another training set with the churn rate of 50%. Only the models built by applying these algorithms on a training set with the churn rate of 30% make balance between accuracy and comprehensibility. In addition, the results of this paper show that ALR can be an excellent alternative for LR, when models only from accuracy perspective are evaluated. DOI: 10.4018/978-1-4666-3898-3.ch008
منابع مشابه
A Novel Genetic Algorithm Based Method for Building Accurate and Comprehensible Churn Prediction Models
Customer churn has become a critical problem for all companies in particular for those that are operating in service-based industries such as telecommunication industry. Data mining techniques have been used for constructing churn prediction models. Past research in churn prediction context have mainly focused on the accuracy aspect of the constructed churn models. However, in addition to the a...
متن کاملBuilding comprehensible customer churn prediction models with advanced rule induction techniques
Customer churn prediction models aim to detect customers with a high propensity to attrite. Predictive accuracy, comprehensibility, and justifiability are three key aspects of a churn prediction model. An accurate model permits to correctly target future churners in a retention marketing campaign, while a comprehensible and intuitive rule-set allows to identify the main drivers for customers to...
متن کاملHierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction
As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...
متن کاملA Neuro-Fuzzy Classifier for Customer Churn Prediction
Churn prediction is a useful tool to predict customer at churn risk. By accurate prediction of churners and non-churners, a company can use the limited marketing resource efficiently to target the churner customers in a retention marketing campaign. Accuracy is not the only important aspect in evaluating a churn prediction models. Churn prediction models should be both accurate and comprehensib...
متن کاملPersonal Credit Score Prediction using Data Mining Algorithms (Case Study: Bank Customers)
Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJIRR
دوره 1 شماره
صفحات -
تاریخ انتشار 2011