Some Results on Σ-derivations

نویسندگان

  • A. HOSSEINI
  • M. HASSANI
  • A. NIKNAM
  • M. S. Moslehian
  • S. HEJAZIAN
چکیده

Let A and B be two Banach algebras and let M be a Banach B-bimodule. Suppose that σ : A → B is a linear mapping and d : A → M is a σ-derivation. We prove several results about automatic continuity of σderivations on Banach algebras. In addition, we define a notion for m-weakly continuous linear mapping and show that, under certain conditions, d and σ are m-weakly continuous. Moreover, we prove that if A is commutative and σ : A → A is a continuous homomorphism such that σ = σ then σdσ(A) ⊆ σ(Q(A)) ⊆ rad(A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

*-σ-biderivations on *-rings

Bresar in 1993 proved that each biderivation on a noncommutative prime ring is a multiple of a commutatot. A result of it is a characterization of commuting additive mappings, because each commuting additive map give rise to a biderivation. Then in 1995, he investigated biderivations, generalized biderivations and sigma-biderivations on a prime ring and generalized the results of derivations fo...

متن کامل

On (σ, τ)-module extension Banach algebras

Let A be a Banach algebra and X be a Banach A-bimodule. In this paper, we define a new product on $Aoplus X$ and generalize the module extension Banach algebras. We  obtain characterizations of Arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new Banach algebra.

متن کامل

A Kadison–sakai Type Theorem

The celebrated Kadison–Sakai theorem states that every derivation on a von Neumann algebra is inner. In this paper, we prove this theorem for ultraweakly continuous ∗-σ-derivations, where σ is an ultraweakly continuous surjective ∗-linear mapping. We decompose a σ-derivation into a sum of an inner σ-derivation and a multiple of a homomorphism. The so-called ∗-(σ, τ)-derivations are also discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011