Relationship between leaf nitrogen and photosynthetic rate for three NAD-ME and three NADP-ME C4 grasses.

نویسندگان

  • D R Taub
  • M T Lerdau
چکیده

Theoretical considerations have suggested that there may be differences in photosynthetic nitrogen use efficiency (PNUE) among plants that use different biochemical variants of C(4) photosynthesis. To test this hypothesis we examined the leaf nitrogen content and photosynthetic rates of six grass species (three of C(4) subtype NAD-ME and three of C(4) subtype NADP-ME) grown over a wide range of nitrogen supply. While there were significant differences among the species in various traits, there were no consistent differences between the C(4) subtypes in either leaf nitrogen content at a given level of nitrogen supply or in the leaf nitrogen-photosynthesis relationship. We suggest that species-level variation in photosynthetic nitrogen use efficiency among C(4) species is large enough to mask any differences that may be due to C(4) subtype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses.

In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly ...

متن کامل

Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2

Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarb...

متن کامل

Ecological significance of C4 photosynthesis: A comparison of C3 and C4 subspecies of Alloteropsis semialata and other NADP-ME Panicoid grasses

The photosynthetic efficiency of C3 grasses declines with increasing temperature and C4 grasses are predicted to be advantaged at temperatures above 15 °C. We demonstrated an above-ground productivity difference in a commongarden experiment with Alloteropsis semialata and show that it is related more to differences in life-history than to photosynthesis. Frost caused leaf mortality in the C4 bu...

متن کامل

The Differences between NAD-ME and NADP-ME Subtypes of C4 Photosynthesis: More than Decarboxylating Enzymes

As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 ar...

متن کامل

Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae.

PREMISE OF THE STUDY Portulacaceae is a family with a remarkable diversity in photosynthetic pathways. This lineage not only has species with different C4 biochemistry (NADP-ME and NAD-ME types) and C3-C4 intermediacy, but also displays different leaf anatomical configurations. Here we addressed the evolutionary history of leaf anatomy and photosynthetic pathways in Portulacaceae. METHODS Pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of botany

دوره 87 3  شماره 

صفحات  -

تاریخ انتشار 2000