Oligosaccharide model of the vascular endothelial glycocalyx in physiological flow

نویسندگان

  • Maria Pikoula
  • Matthew B Tessier
  • Robert J Woods
  • Yiannis Ventikos
چکیده

Experiments have consistently revealed the pivotal role of the endothelial glycocalyx layer in vasoregulation and the layer's contribution to mechanotransduction pathways. However, the exact mechanism by which the glycocalyx mediates fluid shear stress remains elusive. This study employs atomic-scale molecular simulations with the aim of investigating the conformational and orientation properties of highly flexible oligosaccharide components of the glycocalyx and their suitability as transduction molecules under hydrodynamic loading. Fluid flow was shown to have nearly no effect on the conformation populations explored by the oligosaccharide, in comparison with static (diffusion) conditions. However, the glycan exhibited a significant orientation change, when compared to simple diffusion, aligning itself with the flow direction. It is the tethered end of the glycan, an asparagine amino acid, which experienced conformational changes as a result of this flow-induced bias. Our results suggest that shear flow through the layer can have an impact on the conformational properties of saccharide-decorated transmembrane proteins, thus acting as a mechanosensor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microvascular blood flow resistance: role of endothelial surface layer.

Observations of blood flow in microvascular networks have shown that the resistance to blood flow is about twice that expected from studies using narrow glass tubes. The goal of the present study was to test the hypothesis that a macromolecular layer (glycocalyx) lining the endothelial surface contributes to blood flow resistance. Changes in flow resistance in microvascular networks of the rat ...

متن کامل

Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress.

Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports tha...

متن کامل

The glycocalyx is present as soon as blood flow is initiated and is required for normal vascular development.

The glycocalyx, and the thicker endothelial surface layer (ESL), are necessary both for endothelial barrier function and for sensing mechanical forces in the adult. The goal of this study is to use a combination of imaging techniques to establish when the glycocalyx and endothelial surface layer form during embryonic development and to determine the biological significance of the glycocalyx lay...

متن کامل

The endothelial glycocalyx is hydrodynamically relevant in arterioles throughout the cardiac cycle.

The existence of a hydrodynamically relevant endothelial glycocalyx of approximately 0.5 microm in thickness is well established in capillaries and venules in vivo. Since the glycocalyx is likely to have implications for broad areas of vascular physiology and pathophysiology, including endothelial-cell mechanotransduction, vascular permeability, and atherosclerosis, it is necessary to determine...

متن کامل

The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro.

Compelling evidence continues to emerge suggesting that the glycocalyx surface layer on vascular endothelial cells plays a determining role in numerous physiological processes including inflammation, microvascular permeability, and endothelial mechanotransduction. Previous research has shown that enzymes degrade the glycocalyx, whereas inflammation causes shedding of the layer. To track the end...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2018