Inhibition of NAT10 Suppresses Melanogenesis and Melanoma Growth by Attenuating Microphthalmia-Associated Transcription Factor (MITF) Expression
نویسندگان
چکیده
N-acetyltransferase 10 (NAT10) has been considered a target for the treatment of human diseases such as cancer and laminopathies; however, its functional role in the biology of melanocytes is questionable. Using a small molecule or small interfering RNA targeting NAT10, we examined the effect of NAT10 inhibition on melanogenesis and melanoma growth in human and mouse melanoma cells. Genetic silencing or chemical inhibition of NAT10 resulted in diminished melanin synthesis through the suppression of melanogenesis-stimulating genes such as those encoding dopachrome tautomerase (DCT) and tyrosinase in B16F10 melanoma cells. In addition, NAT10 inhibition significantly increased cell cycle arrest in S-phase, thereby suppressing the growth and proliferation of malignant melanoma cells in vitro and in vivo. These results demonstrate the potential role of NAT10 in melanogenesis and melanoma growth through the regulation of microphthalmia-associated transcription factor (MITF) expression and provide a promising strategy for the treatment of various skin diseases (melanoma) and pigmentation disorders (chloasma and freckles).
منابع مشابه
Evaluation of antioxidant and anti-melanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells
Objective(s): Nepeta binaludensis Jamzad (Lamiaceae) has been used in folk medicine of Iran to cure various diseases. The plant is an endemic species to the country that has recently been identified in Razavi Khorasan province. To evaluate the antioxidant and anti-melanogenesis of N. binaludensis, in this study the inhibitory activity of different extracts of N. binaludensis in murine melanoma ...
متن کاملThe effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells
In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia- associated transcription factor (MITF), TYR, and tyrosinase-related pro...
متن کاملIsosakuranetin, a 4'-O-methylated flavonoid, stimulates melanogenesis in B16BL6 murine melanoma cells.
AIMS The beneficial effects of 4'-O-methylated flavonoids on induction of melanogenesis are well established. Here, we report the effect of isosakuranetin (Iso) on melanogenesis in B16BL6 melanoma cells and an analysis of the signaling pathways involved in this activity. METHODS B16BL6 melanoma cells were treated with several concentrations of Iso and melanin content was measured. Activation ...
متن کاملConditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MI...
متن کاملHypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF.
Microphthalmia-associated transcription factor (MITF) regulates normal melanocyte development and is also a lineage-selective oncogene implicated in melanoma and clear-cell sarcoma (i.e., melanoma of soft parts). We have observed that MITF expression is potently reduced under hypoxic conditions in primary melanocytes and melanoma and clear cell sarcoma cells through hypoxia inducible factor 1 (...
متن کامل