Rigorous Numerics in Floquet Theory: Computing Stable and Unstable Bundles of Periodic Orbits
نویسندگان
چکیده
In this paper, a rigorous method to compute Floquet normal forms of fundamental matrix solutions of non-autonomous linear differential equations with periodic coefficients is introduced. The Floquet normal form of a fundamental matrix solution Φ(t) is a canonical decomposition of the form Φ(t) = Q(t)e, where Q(t) is a real periodic matrix and R is a constant matrix. To compute rigorously the Floquet normal form, the idea is to use the regularity of Q(t) and to solve simultaneously for R and Q(t) with the contraction mapping theorem in a Banach space of rapidly decaying coefficients. The explicit knowledge of R and Q can then be used to construct, in a rigorous computer-assisted way, stable and unstable bundles of periodic orbits of vector fields. The new proposed method does not require rigorous numerical integration of the ODE.
منابع مشابه
Dynamic Stability Analysis of a Beam Excited by a Sequence of Moving Mass Particles
In this paper, the dynamic stability analysis of a simply supported beam carrying a sequence of moving masses is investigated. Many applications such as motion of vehicles or trains on bridges, cranes transporting loads along their span, fluid transfer pipe systems and the barrel of different weapons can be represented as a flexible beam carrying moving masses. The periodical traverse of masses...
متن کاملStability regions for synchronized τ-periodic orbits of coupled maps with coupling delay τ.
Motivated by the chaos suppression methods based on stabilizing an unstable periodic orbit, we study the stability of synchronized periodic orbits of coupled map systems when the period of the orbit is the same as the delay in the information transmission between coupled units. We show that the stability region of a synchronized periodic orbit is determined by the Floquet multiplier of the peri...
متن کاملClassical and Quantum Dynamics of a Periodically Driven Particle in a Triangular Well
We investigate the correspondence between classical and quantum mechanics for periodically time dependent Hamiltonian systems, using the example of a periodically forced particle in a one-dimensional triangular well potential. In particular, we consider quantum mechanical Floquet states associated with resonances in the classical phase space. When the classical motion exhibits subharmonic reson...
متن کاملParameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form
We present an efficient numerical method for computing Fourier-Taylor expansions of (un)stable manifolds associated with hyperbolic periodic orbits. Three features of the method are that (1) we obtain accurate representation of the invariant manifold as well as the dynamics on the manifold, (2) it admits natural a-posteriori error analysis, and (3) it does not require numerically integrating th...
متن کاملRigorous Numerics for Dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs
We describe a Lohner-type algorithm for rigorous integration of dissipative PDEs. Using it for the Kuramoto-Sivashinsky PDE on the line with odd and periodic boundary conditions we give a computer assisted proof the existence of multiple periodic orbits.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 12 شماره
صفحات -
تاریخ انتشار 2013