Buchsbaum Homogeneous Algebras with Minimal Multiplicity
نویسنده
چکیده
In this paper we first give a lower bound on multiplicities for Buchsbaum homogeneous k-algebras A in terms of the dimension d, the codimension c, the initial degree q, and the length of the local cohomology modules of A. Next, we introduce the notion of Buchsbaum k-algebras with minimal multiplicity of degree q, and give several characterizations for those rings. In particular, we will show that those algebras have linear free resolutions. Further, we will give many examples of those algebras.
منابع مشابه
Buchsbaum Stanley–reisner Rings with Minimal Multiplicity
In this paper, we study non-Cohen–Macaulay Buchsbaum Stanley– Reisner rings with linear free resolution. In particular, for given integers c, d, q with c ≥ 1, 2 ≤ q ≤ d, we give an upper bound hc,d,q on the dimension of the unique non-vanishing homology H̃q−2(∆; k) of a d-dimensional Buchsbaum ring k[∆] with q-linear resolution and codimension c. Also, we discuss about existence for such Buchsba...
متن کاملA Note on the Multiplicity of Determinantal Ideals
Abstract. Herzog, Huneke, and Srinivasan have conjectured that for any homogeneous k-algebra, the multiplicity is bounded above by a function of the maximal degrees of the syzygies and below by a function of the minimal degrees of the syzygies. The goal of this paper is to establish the multiplicity conjecture of Herzog, Huneke, and Srinivasan about the multiplicity of graded Cohen-Macaulay alg...
متن کاملFormulas for the Multiplicity of Graded Algebras
Let R be a standard graded Noetherian algebra over an Artinian local ring. Motivated by the work of Achilles and Manaresi in intersection theory, we first express the multiplicity of R by means of local j-multiplicities of various hyperplane sections. When applied to a homogeneous inclusion A ⊆ B of standard graded Noetherian algebras over an Artinian local ring, this formula yields the multipl...
متن کاملThe Equality I = Qi in Buchsbaum Rings
Let A be a Noetherian local ring with the maximal ideal m and d = dim A. Let Q be a parameter ideal in A. Let I = Q : m. The problem of when the equality I = QI holds true is explored. When A is a Cohen-Macaulay ring, this problem was completely solved by A. Corso, C. Huneke, C. Polini, and W. Vasconcelos [CHV, CP, CPV], while nothing is known when A is not a Cohen-Macaulay ring. The present pu...
متن کاملA numerical characterization of reduction for arbitrary modules
Let (R,m) be a d-dimensional Noetherian local ring and E a finitely generated R-submodule of a free module R. In this work we introduce a Buchsbaum-Rim multiplicity sequence ck(E), k = 0, . . . , d + p − 1 for E that generalize the Buchsbaum-Rim multiplicity defined when E has finite colength in R as well as the Achilles-Manaresi multiplicity sequence that applies when E ⊆ R is an ideal. Our ma...
متن کامل