Reversible switching of room temperature ferromagnetism in CeO2-Co nanoparticles
نویسندگان
چکیده
منابع مشابه
Room Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملNickel-Doped Ceria Nanoparticles: The Effect of Annealing on Room Temperature Ferromagnetism
Nickel-doped cerium dioxide nanoparticles exhibit room temperature ferromagnetism due to high oxygen mobility within the doped CeO2 lattice. CeO2 is an excellent doping matrix as it can lose oxygen whilst retaining its structure. This leads to increased oxygen mobility within the fluorite CeO2 lattice, leading to the formation of Ce3+ and Ce4+ species and hence doped ceria shows a high propensi...
متن کاملRoom Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملRole of dopant, defect, and host oxide in the observed room temperature ferromagnetism: Co–ZnO versus Co–CeO2
ferromagnetism: Co–ZnO versus Co–CeO2 Lubna R. Shah, Weigang Wang, Hao Zhu, Bakhtyar Ali, Y. Q. Song, H. W. Zhang, S. I. Shah, and J. Q. Xiao Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA School of Microelectronic and Solid-State Electronic, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China Materials Science and Eng...
متن کاملInvestigation on Influences of Synthesis Methods on the Magnetic Properties of Trimetallic Nanoparticles of Iron-Cobalt-Manganese Supported by Magnesium Oxide
Using Fe(NO3)3.9H2O, Co(NO3)2.6H2O and Mn(NO3)2.4H2O the magnetic properties of nanoparticles trimetalic Iron - Cobalt - Manganese, with supported Magnesium oxide have been prepared by Co-precipitation and Solvothermal methods. The prepared samples are characterized by Scanning Electron Micros...
متن کامل