Does gene flow constrain adaptive divergence or vice versa? A test using ecomorphology and sexual isolation in Timema cristinae walking-sticks.
نویسندگان
چکیده
Population differentiation often reflects a balance between divergent natural selection and the opportunity for homogenizing gene flow to erode the effects of selection. However, during ecological speciation, trait divergence results in reproductive isolation and becomes a cause, rather than a consequence, of reductions in gene flow. To assess both the causes and the reproductive consequences of morphological differentiation, we examined morphological divergence and sexual isolation among 17 populations of Timema cristinae walking-sticks. Individuals from populations adapted to using Adenostoma as a host plant tended to exhibit smaller overall body size, wide heads, and short legs relative to individuals using Ceonothus as a host. However, there was also significant variation in morphology among populations within host-plant species. Mean trait values for each single population could be reliably predicted based upon host-plant used and the potential for homogenizing gene flow, inferred from the size of the neighboring population using the alternate host and mitochondrial DNA estimates of gene flow. Morphology did not influence the probability of copulation in between-population mating trials. Thus, morphological divergence is facilitated by reductions in gene flow, but does not cause reductions in gene flow via the evolution of sexual isolation. Combined with rearing data indicating that size and shape have a partial genetic basis, evidence for parallel origins of the host-associated forms, and inferences from functional morphology, these results indicate that morphological divergence in T. cristinae reflects a balance between the effects of host-specific natural selection and gene flow. Our findings illustrate how data on mating preferences can help determine the causal associations between trait divergence and levels of gene flow.
منابع مشابه
The evolution of host preference in allopatric vs. parapatric populations of Timema cristinae walking-sticks.
Divergent habitat preferences can contribute to speciation, as has been observed for host-plant preferences in phytophagous insects. Geographic variation in host preference can provide insight into the causes of preference evolution. For example, selection against maladaptive host-switching occurs only when multiple hosts are available in the local environment and can result in greater divergen...
متن کاملHeterogeneous genomic differentiation between walking-stick ecotypes: "isolation by adaptation" and multiple roles for divergent selection.
Genetic differentiation can be highly variable across the genome. For example, loci under divergent selection and those tightly linked to them may exhibit elevated differentiation compared to neutral regions. These represent "outlier loci" whose differentiation exceeds neutral expectations. Adaptive divergence can also increase genome-wide differentiation by promoting general barriers to neutra...
متن کاملDensity-dependent selection closes an eco-evolutionary feedback loop in the stick insect Timema cristinae.
Empirical demonstrations of feedbacks between ecology and evolution are rare. Here, we used a field experiment to test the hypothesis that avian predators impose density-dependent selection (DDS) on Timema cristinae stick insects. We transplanted wild-caught T. cristinae to wild bushes at 50 : 50 cryptic : conspicuous morph ratio and manipulated density by transplanting either 24 or 48 individu...
متن کاملReproductive isolation driven by the combined effects of ecological adaptation and reinforcement.
Recent years have seen a resurgence of interest in the process of speciation but few studies have elucidated the mechanisms either driving or constraining the evolution of reproductive isolation. In theory, the direct effects of reinforcing selection for increased mating discrimination where interbreeding produces hybrid offspring with low fitness and the indirect effects of adaptation to diffe...
متن کاملDe novo characterization of the Timema cristinae transcriptome facilitates marker discovery and inference of genetic divergence.
Adaptation to different ecological environments can promote speciation. Although numerous examples of such 'ecological speciation' now exist, the genomic basis of the process, and the role of gene flow in it, remains less understood. This is, at least in part, because systems that are well characterized in terms of their ecology often lack genomic resources. In this study, we characterize the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 58 1 شماره
صفحات -
تاریخ انتشار 2004