Scaling and dissipation in the GOY shell model

نویسندگان

  • Leo Kadanoff
  • Jane Wang
  • Roberto Benzi
چکیده

This is a paper about multifractal scaling and dissipation in a shell model of turbulence, called the Gledzer-Ohkitani-Yamada (GOY) model. This set of equations describes a one-dimensional cascade of energy towards higher wave vectors. When the model is chaotic, the high-wave-vector velocity is a product of roughly independent multipliers, one for each logarithmic momentum shell. The appropriate tool for studying the multifractal properties of this model is shown to be the energy flux on each shell rather than the velocity on each shell. Using this quantity, one can obtain better measurements of the deviations from Kolmogorov scaling (in the GOY dynamics) than were available up to now. These deviations are seen to depend upon the details of inertial-range structure of the model and hence are not universal. However, once the conserved quantities of the model are fixed to have the same scaling structure as energy and helicity, these deviations seem to depend only weakly upon the scale parameter of the model. The connection between multifractality in the velocity distribution and multifractality in the dissipation is analyzed. Arguments suggest that the connection is universal for models of this character, but the model has a different behavior from that of real turbulence. Also, the scaling behavior of time correlations of shell velocities, of the dissipation, and of Lyapunov indices are predicted. These scaling arguments can be carried over, with little change, to multifractal models of real turbulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling and Dissipation in the GOY shell

This is a paper about multi-fractal scaling and dissipation in a shell model of turbulence, called the Gledzer-Ohkitani-Yamada model or GOY model. This set of equations describes a one dimensional cascade of energy towards higher wave vectors. When the model is chaotic, the high-wave-vector velocity is a product of roughly independent multipliers, one for each logarithmic momentum shell. The ap...

متن کامل

Links between dissipation, intermittency, and helicity in the GOY model revisited

High resolution simulations within the GOY shell model are used to study various scaling relations for turbulence. A power-law relation between the second-order intermittency correction and the crossover from the inertial to the dissipation range is confirmed. Evidence is found for the intermediate viscous dissipation range proposed by Frisch and Vergassola. It is emphasized that insufficient d...

متن کامل

Anomalous scaling in a shell model of helical turbulence

In a helical flow there is a subrange of the inertial range in which there is a cascade of both energy and helicity. In this range the scaling exponents associated with the cascade of helicity can be defined. These scaling exponents are calculated from a simulation of the GOY shell model. The scaling exponents for even moments are associated with the scaling of the symmetric part of the probabi...

متن کامل

How the viscous subrange determines inertial rangeproperties in turbulence shell

We calculate static solutions of the 'GOY' shell model of turbulence and do a linear stability analysis. The asymptotic limit of large Reynolds numbers is analyzed. A phase diagram is presented which shows the range of stability of the static solution. We see an unexpected oscillatory dependence of the stability range upon lg , where is the viscosity. This eeect depends upon the discrete struct...

متن کامل

Intermittency in Stochastically Perturbed Turbulent Models

Random dynamical models obtained as a perturbation of the GOY (GledzerOhkitani-Yamada) shell model for three-dimensional turbulence are defined. Both static (time-independent) and dynamical scaling properties of the randomly perturbed model are studied. The random static-inviscid manifold, in contrast to the dynamical evolution, does not show intermittent scaling laws. This behavior is linked t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999