GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias.
نویسندگان
چکیده
The DNA strands in most prokaryotic genomes experience strand-biased spontaneous mutation, especially C-->T mutations produced by deamination that occur preferentially in the leading strand. This has often been invoked to account for the asymmetry in nucleotide composition, typically measured by GC skew, between the leading and the lagging strand. Casting such strand asymmetry in the framework of a nucleotide substitution model is important for understanding genomic evolution and phylogenetic reconstruction. We present a substitution model showing that the increased C-->T mutation will lead to positive GC skew in one strand but negative GC skew in the other, with greater C-->T mutation pressure associated with greater differences in GC skew between the leading and the lagging strand. However, the model based on mutation bias alone does not predict any positive correlation in GC skew between the leading and lagging strands. We computed GC skew for coding sequences collinear with the leading and lagging strands across 339 prokaryotic genomes and found a strong and positive correlation in GC skew between the two strands. We show that the observed positive correlation can be satisfactorily explained by an improved substitution model with one additional parameter incorporating a general trend of C avoidance.
منابع مشابه
Replicating Strand Asymmetry in Bacterial and Eukaryotic Genomes
It is my pleasure as a Guest Editor of Current Genomics to present you with a 'hot topic issue' on DNA replication. DNA replication adopts a set of asymmetric mechanisms. One of them is the division of leading and lagging strands. In 1991, the nucleotide composition bias between the two replicating strands was originally found in genomes of echinoderm and vertebrate mitochondria. In the followi...
متن کاملQuantitative analysis of correlation between AT and GC biases among bacterial genomes
Due to different replication mechanisms between the leading and lagging strands, nucleotide composition asymmetries widely exist in bacterial genomes. A general consideration reveals that the leading strand is enriched in Guanine (G) and Thymine (T), and the lagging strand shows richness in Adenine (A) and Cytosine (C). However, some bacteria like Bacillus subtilis have been discovered composin...
متن کاملStrand-specific compositional asymmetries in double-stranded DNA viruses.
Analysis of 22 complete sequences of double-stranded DNA viruses reveals striking compositional asymmetries between leading and lagging, and between transcribed and non-transcribed strands. In all bi-directionally replicated genomes analyzed, the observed leading strand GC skew (measuring relative excess of guanines versus cytosines) is different from that in the lagging strand. In most of thes...
متن کاملRearrangements between differently replicating DNA strands in asymmetric bacterial genomes.
Many bacterial genomes are under asymmetric mutational pressure which introduces compositional asymmetry into DNA molecule resulting in many biases in coding structure of chromosomes. One of the processes affected by the asymmetry is translocation changing the position of the coding sequence on chromosome in respect to the orientation on the leading and lagging DNA strand. When analysing sets o...
متن کاملA Blueprint for a Mutationist Theory of Replicative Strand Asymmetries Formation
In the present review, we summarized current knowledge on replicative strand asymmetries in prokaryotic genomes. A cornerstone for the creation of a theory of their formation has been overviewed. According to our recent works, the probability of nonsense mutation caused by replication-associated mutational pressure is higher for genes from lagging strands than for genes from leading strands of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 253 3 شماره
صفحات -
تاریخ انتشار 2008