High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.
نویسندگان
چکیده
Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.
منابع مشابه
Label-Free Screening Small-Molecule Compound Libraries for Protein-Ligands Using a High-Throughput Optical Scanning Microscope
We describe a new oblique-incidence reflectivity difference (OI-RD) scanning microscope for high-throughput screening, in microarray format on functionalized glass slides, small-molecule compound libraries for protein ligands. The microscope employs a combination of scan mirror for y-scan and single-axis translation stage for x-scan. For a printed microarray with over 10,000 features, each of 1...
متن کاملSimultaneous measurement of 10,000 protein-ligand affinity constants using microarray-based kinetic constant assays.
Fluorescence-based endpoint detection of microarrays with 10,000 or more molecular targets is a most useful tool for high-throughput profiling of biomolecular interactions, including screening large molecular libraries for novel protein ligands. However, endpoint fluorescence data such as images of reacted microarrays contain little information on kinetic rate constants, and the reliability of ...
متن کاملScreening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope.
We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm x 4 cm. Such a field of view can accommodate a printed s...
متن کاملLabel-free optical detection of small-molecule compound microarrays immobilized on solid support using macromolecular scaffolds and subsequent protein binding reactions
Small-molecule microarrays composed of tens of thousands of distinct synthetic molecules, natural products, and their combinations/modifications provide a high-throughput platform for studying protein-ligand interactions. Immobilization of small molecule compounds on solid supports remains a challenge as widely varied small molecules generally lack unique chemical groups that readily react with...
متن کاملDiscovering small molecule ligands of vascular endothelial growth factor that block VEGF-KDR binding using label-free microarray-based assays.
We present here a label-free microarray-based assay platform that we used to identify inhibitors of vascular endothelial growth factor (VEGF)-kinase-insertion domain receptor (KDR) binding. Supported by a combination of special ellipsometry-based optical detection and small molecule microarrays (SMM), this platform consists of three assays: (1) the first assay detects binding of a target protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International drug discovery
دوره شماره
صفحات -
تاریخ انتشار 2011