POS-Tagger for English-Vietnamese Bilingual Corpus

نویسندگان

  • Dinh Dien
  • Kiem Hoang
چکیده

Corpus-based Natural Language Processing (NLP) tasks for such popular languages as English, French, etc. have been well studied with satisfactory achievements. In contrast, corpus-based NLP tasks for unpopular languages (e.g. Vietnamese) are at a deadlock due to absence of annotated training data for these languages. Furthermore, hand-annotation of even reasonably well-determined features such as part-ofspeech (POS) tags has proved to be labor intensive and costly. In this paper, we suggest a solution to partially overcome the annotated resource shortage in Vietnamese by building a POS-tagger for an automatically word-aligned English-Vietnamese parallel Corpus (named EVC). This POS-tagger made use of the Transformation-Based Learning (or TBL) method to bootstrap the POS-annotation results of the English POS-tagger by exploiting the POS-information of the corresponding Vietnamese words via their wordalignments in EVC. Then, we directly project POSannotations from English side to Vietnamese via available word alignments. This POS-annotated Vietnamese corpus will be manually corrected to become an annotated training data for Vietnamese NLP tasks such as POS-tagger, Phrase-Chunker, Parser, Word-Sense Disambiguator, etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrapping a Multilingual Part-of-speech Tagger in One Person-day

This paper presents a method for bootstrapping a fine-grained, broad-coverage part-of-speech (POS) tagger in a new language using only one personday of data acquisition effort. It requires only three resources, which are currently readily available in 60-100 world languages: (1) an online or hard-copy pocket-sized bilingual dictionary, (2) a basic library reference grammar, and (3) access to an...

متن کامل

Building an Annotated English-Vietnamese Parallel Corpus for Training Vietnamese-related NLPs

In NLP (Natural Language Processing) tasks, the highest difficulty which computers had to face with, is the built-in ambiguity of Natural Languages. To disambiguate it, formerly, they based on human-devised rules. Building such a complete rule-set is time-consuming and labor-intensive task whilst it doesn’t cover all the cases. Besides, when the scale of system increases, it is very difficult t...

متن کامل

Vietnamese Word Segmentation

Word segmentation is the first and obligatory task for every NLP. For inflectional languages like English, French, Dutch,.. their word boundaries are simply assumed to be whitespaces or punctuations. Whilst in various Asian languages, including Chinese and Vietnamese, whitespaces are never used to determine the word boundaries, so one must resort to such higher levels of information as: informa...

متن کامل

EVBCorpus - A Multi-Layer English-Vietnamese Bilingual Corpus for Studying Tasks in Comparative Linguistics

Bilingual corpora play an important role as resources not only for machine translation research and development but also for studying tasks in comparative linguistics. Manual annotation of word alignments is of significance to provide a gold-standard for developing and evaluating machine translation models and comparative linguistics tasks. This paper presents research on building an English-Vi...

متن کامل

Simpler unsupervised POS tagging with bilingual projections

We present an unsupervised approach to part-of-speech tagging based on projections of tags in a word-aligned bilingual parallel corpus. In contrast to the existing state-of-the-art approach of Das and Petrov, we have developed a substantially simpler method by automatically identifying “good” training sentences from the parallel corpus and applying self-training. In experimental results on eigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003