Reduction of polysaccharide production in Pseudomonas aeruginosa biofilms by bismuth dimercaprol (BisBAL) treatment.

نویسندگان

  • C T Huang
  • P S Stewart
چکیده

Microorganisms in biofilms, cells attached to a surface and embedded in secreted insoluble extracellular polymers, are recalcitrant to chemical biocides and antibiotics. When Pseudomonas aeruginosa ERC1 biofilms were treated continuously with 1 x MIC of bismuth dimercaprol (BisBAL), biofilm density determined by both total cell counts and viable cell counts increased during the first 30 h period then decreased thereafter. After 120 h of treatment there was an approximate 3-log reduction in viable cell areal density compared with the untreated control. Per-cell total polysaccharide production was significantly reduced in biofilms exposed to 12.5 microM BisBAL compared with the untreated control. In biofilm cultures, 1 x MIC of BisBAL did not initially kill attached cells but was enough to reduce polysaccharide production. As treatment proceeded, the normalized polysaccharide content was reduced and those cells attached became susceptible to 1 x MIC of BisBAL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative study on the formation of Pseudomonas aeruginosa biofilm

Biofilms are bacterial cells in a matrix of extracellular polymeric substance. The formation of biofilm depends on the microenvironment. In this study, the effect of temperature on Pseudomonas aeruginosa biofilm formation was evaluated with respect to three parameters-the mass of biofilm formed, the production of extracellular polysaccharide and the adhesion force. The results indicate that bio...

متن کامل

Synergistic Effects of Bismuth Thiols and Various Antibiotics Against Pseudomonas aeruginosa Biofilm

BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that takes advantages of some weaknesses in the immune system to initiate an infection. Biofilms of P. aeruginosa can cause chronic opportunistic infections in immunocompromised and elderly patients. This bacterium is considered as a model organism to study antibiotic resistance as well as biofilm formation. In the biofilm structure...

متن کامل

One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

Objective(s): Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Algin...

متن کامل

In vitro activity of Quercus brantii extracts against biofilm- producing Pseudomonas aeruginosa

Background: Biofilm formation by Pseudomonas aeruginosa is a serious concern in treatment of diseases and medical industries. Natural products that originate in plants can influence microbial biofilm formation. The effect of ethyl acetate, methanol and water- methanol extracts of Quercus brantii on biofilm formation and biofilm disruption of P. aeruginosa were investigated in this study. Methods...

متن کامل

Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance

Pseudomonas aeruginosa PAO1 produces three polysaccharides, alginate, Psl, and Pel that play distinct roles in attachment and biofilm formation for monospecies biofilms. Considerably less is known about their role in the development of mixed species biofilm communities. This study has investigated the roles of alginate, Psl, and Pel during biofilm formation of P. aeruginosa in a defined and exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 1999