A New Family of Somos-like Recurrences
نویسندگان
چکیده
We exhibit a three parameter infinite family of quadratic recurrence relations inspired by the well known Somos sequences. For one infinite subfamily we prove that the recurrence generates an infinite sequence of integers by showing that the same sequence is generated by a linear recurrence (with suitable initial conditions). We also give conjectured relations among the three parameters so that the quadratic recurrences generate sequences of integers.
منابع مشابه
Integrality and the Laurent phenomenon for Somos 4 sequences
Somos 4 sequences are a family of sequences defined by a fourthorder quadratic recurrence relation with constant coefficients. For particular choices of the coefficients and the four initial data, such recurrences can yield sequences of integers. Fomin and Zelevinsky have used the theory of cluster algebras to prove that these recurrences also provide one of the simplest examples of the Laurent...
متن کاملLaurent Polynomials and Superintegrable Maps
This article is dedicated to the memory of Vadim Kuznetsov, and begins with some of the author’s recollections of him. Thereafter, a brief review of Somos sequences is provided, with particular focus being made on the integrable structure of Somos-4 recurrences, and on the Laurent property. Subsequently a family of fourth-order recurrences that share the Laurent property are considered, which a...
متن کاملLaurent Phenomenon Sequences
In this paper, we undertake a systematic study of recurrences xm+nxm = P (xm+1, . . . , xm+n−1) which exhibit the Laurent phenomenon. Some of the most famous among these sequences come from the Somos and the Gale-Robinson recurrences. Our approach is based on finding period 1 seeds of Laurent phenomenon algebras of Lam-Pylyavskyy. We completely classify polynomials P that generate period 1 seed...
متن کاملAnd Andrei
A composition of birational maps given by Laurent polynomials need not be given by Laurent polynomials; however, sometimes—quite unexpectedly—it does. We suggest a unified treatment of this phenomenon, which covers a large class of applications. In particular, we settle in the affirmative a conjecture of D. Gale and R. Robinson on integrality of generalized Somos sequences, and prove the Lauren...
متن کاملThe Density of Primes Dividing a Term in the Somos-5 Sequence
The Somos-5 sequence is defined by a0 = a1 = a2 = a3 = a4 = 1 and am = am−1am−4+am−2am−3 am−5 for m ≥ 5. We relate the arithmetic of the Somos-5 sequence to the elliptic curve E : y2 + xy = x3 + x2 − 2x and use properties of Galois representations attached to E to prove the density of primes p dividing some term in the Somos-5 sequence is equal to 5087 10752 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008