On the Phase Diagram of the Random Field Ising Model on the Bethe Lattice

نویسنده

  • P. M. Bleher
چکیده

The ferromagnetic Ising model on the Bethe lattice of degree k is considered in the presence of a dichotomous external random field fx= +a and the temperature T>0. We give a description of a part of the phase diagram of this model in the T-a. plane, where we are able to construct limiting Gibbs states and ground states. By comparison with the model with a constant external field we show that for all realizations {={£x= ±a} of the external random field: (i) the Gibbs state is unique for T> Tc ( k > 2 and any a) or for a> 3 (k = 2 and any T); ( i i ) the +-phases coexist in the domain {T< T c , a . < H F ( T ) } , where Tc is the critical temperature and HF(T) is the critical external field in the ferromagnetic Ising model on the Bethe lattice with a constant external field. Then we prove that for almost all £,: ( i i i) the +-phases coexist in a larger domain { T< T c , a < H F ( T ) +e(T)}, where £(T)>0; and (iv) the Gibbs state is unique for 3 > a > 2 at any T. We show that the residual entropy at T—0 is positive for 3 > a > 2, and we give a constructive description of ground states, by so-called dipole configurations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

un 2 00 1 Phase diagram of the random field Ising model on the Bethe lattice

The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, Ruiz and Zagrebnov [J. Stat. Phys. 93, 33 (1998)] an exact upper bound for the existence of a unique paramagnetic phase is found which considerably ...

متن کامل

Spin systems on hypercubic Bethe lattices: A Bethe-Peierls approach

We study spin systems on Bethe lattices constructed from ddimensional hypercubes. Although these lattices are not tree-like, and therefore closer to real cubic lattices than Bethe lattices or regular random graphs, one can still use the Bethe-Peierls method to derive exact equations for the magnetization and other thermodynamic quantities. We compute phase diagrams for ferromagnetic Ising model...

متن کامل

2 00 6 Spin glass behaviour on random lattices

The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction (w) of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it was shown that w = 1/2, correponding to an unbiased spin glass, is a singular point in the phase diagram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003