A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI
نویسندگان
چکیده
Remote sensing has more advantages than the traditional methods of land surface water (LSW) mapping because it is a low-cost, reliable information source that is capable of making high-frequency and repeatable observations. The normalized difference water indexes (NDWIs), calculated from various band combinations (green, near-infrared (NIR), or shortwave-infrared (SWIR)), have been successfully applied to LSW mapping. In fact, new NDWIs will become available when Advanced Land Imager (ALI) data are used as the ALI sensor provides one green band (Band 4), two NIR bands (Bands 6 and 7), and three SWIR bands (Bands 8, 9, and 10). Thus, selecting the optimal band or combination of bands is critical when ALI data are employed to map LSW using NDWI. The purpose of this paper is to find the best performing NDWI model of the ALI data in LSW map. In this study, eleven NDWI models based on ALI, Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) data were compared to assess the performance of ALI data in LSW mapping, at three different study sites in the Yangtze River Basin, China. The contrast method, Otsu method, and confusion matrix were calculated to OPEN ACCESS Remote Sens. 2013, 5 5531 evaluate the accuracies of the LSW maps. The accuracies of LSW maps derived from eleven NDWI models showed that five NDWI models of the ALI sensor have more than an overall accuracy of 91% with a Kappa coefficient of 0.78 of LSW maps at three test sites. In addition, the NDWI model, calculated from the green (Band 4: 0.525–0.605 μm) and SWIR (Band 9: 1.550–1.750 μm) bands of the ALI sensor, namely NDWIA4,9, was shown to have the highest LSW mapping accuracy, more than the other NDWI models. Therefore, the NDWIA4,9 is the best indicator for LSW mapping of the ALI sensor. It can be used for mapping LSW with high accuracy.
منابع مشابه
Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are currently operational for routine Earth observation. There are substantial differences between instruments onboard both satellites. The enhancements achieved with Landsat-8 refer to the scanning technology (replacing of whisk-broom scanners with two separate push-bro...
متن کاملA Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery
Impervious surface area (ISA) is a key factor for monitoring urban environment and land development. Automatic mapping of impervious surfaces has attracted growing attention in recent years. Spectral built-up indices are considered promising to map ISA distributions due to their easy, parameter-free implementations. This study explores the potentials of impervious surface indices for ISA mappin...
متن کاملبارزسازی فرایند رسوبگذاری در سامانههای پخش سیلاب با استفاده از دادههای تصاویر ماهوارهای LANDSAT، سنجندههای TM و ETM+
Of the applications of remote sensing and satellite images in natural resources is distinguishing and detection of changes in land surface. The image classification using Maximum Likelihood (MLC) is one the prevalent method which is used in a study of the application of TM and ETM+ satellite images to detect sediment deposition on an implemented floodwater spreading scheme. In order to implemen...
متن کاملWater Feature Extraction and Change Detection Using Multitemporal Landsat Imagery
Lake Urmia is the 20th largest lake and the second largest hyper saline lake (before September 2010) in the world. It is also the largest inland body of salt water in the Middle East. Nevertheless, the lake has been in a critical situation in recent years due to decreasing surface water and increasing salinity. This study modeled the spatiotemporal changes of Lake Urmia in the period 2000–2013 ...
متن کاملبارزسازی فرایند رسوبگذاری در سامانههای پخش سیلاب با استفاده از دادههای تصاویر ماهوارهای LANDSAT، سنجندههای TM و ETM+
Of the applications of remote sensing and satellite images in natural resources is distinguishing and detection of changes in land surface. The image classification using Maximum Likelihood (MLC) is one the prevalent method which is used in a study of the application of TM and ETM+ satellite images to detect sediment deposition on an implemented floodwater spreading scheme. In order to implemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013