Architecture-aware Coding for Distributed Storage: Repairable Block Failure Resilient Codes
نویسندگان
چکیده
In large scale distributed storage systems (DSS) deployed in cloud computing, correlated failures resulting in simultaneous failure (or, unavailability) of blocks of nodes are common. In such scenarios, the stored data or a content of a failed node can only be reconstructed from the available live nodes belonging to the available blocks. To analyze the resilience of the system against such block failures, this work introduces the framework of Block Failure Resilient (BFR) codes, wherein the data (e.g., a file in DSS) can be decoded by reading out from a same number of codeword symbols (nodes) from a subset of available blocks of the underlying codeword. Further, repairable BFR codes are introduced, wherein any codeword symbol in a failed block can be repaired by contacting a subset of remaining blocks in the system. File size bounds for repairable BFR codes are derived, and the trade-off between per node storage and repair bandwidth is analyzed, and the corresponding minimum storage regenerating (BFRMSR) and minimum bandwidth regenerating (BFR-MBR) points are derived. Explicit codes achieving the two operating points for a special case of parameters are constructed, wherein the underlying regenerating codewords are distributed to BFR codeword symbols according to combinatorial designs. Finally, BFR locally repairable codes (BFR-LRC) are introduced, an upper bound on the resilience is derived and optimal code construction are provided by a concatenation of Gabidulin and MDS codes. Repair efficiency of BFR-LRC is further studied via the use of BFR-MSR/MBR codes as local codes. Code constructions achieving optimal resilience for BFR-MSR/MBR-LRCs are provided for certain parameter regimes. Overall, this work introduces the framework of block failures along with optimal code constructions, and the study of architecture-aware coding for distributed storage systems.
منابع مشابه
Linear Programming Bounds for Distributed Storage Codes
A major issue of locally repairable codes is their robustness. If a local repair group is not able to perform the repair process, this will result in increasing the repair cost. Therefore, it is critical for a locally repairable code to have multiple repair groups. In this paper we consider robust locally repairable coding schemes which guarantee that there exist multiple alternative local repa...
متن کاملOn the Average Locality of Locally Repairable Codes
A linear block code with dimension k, length n, and minimum distance d is called a locally repairable code (LRC) with locality r if it can retrieve any coded symbol by at most r other coded symbols. LRCs have been recently proposed and used in practice in distributed storage systems (DSSs) such as Windows Azure storage and Facebook HDFS-RAID. Theoretical bounds on the maximum locality of LRCs (...
متن کاملConstruction of optimal locally repairable codes via automorphism groups of rational function fields
Locally repairable codes, or locally recoverable codes (LRC for short) are designed for application in distributed and cloud storage systems. Similar to classical block codes, there is an important bound called the Singleton-type bound for locally repairable codes. In this paper, an optimal locally repairable code refers to a block code achieving this Singleton-type bound. Like classical MDS co...
متن کاملBatch and PIR Codes and Their Connections to Locally-Repairable Codes
Two related families of codes are studied: batch codes and codes for private information retrieval. These two families can be viewed as natural generalizations of locally repairable codes, which were extensively studied in the context of coding for fault tolerance in distributed data storage systems. Bounds on the parameters of the codes, as well as basic constructions, are presented. Connectio...
متن کاملHybrid Regenerating Codes for Distributed Storage Systems
Distributed storage systems are mainly justified due to their ability to store data reliably over some unreliable nodes such that the system can have long term durability. Recently, regenerating codes are proposed to make a balance between the repair bandwidth and the storage capacity per node. This is achieved through using the notion of network coding approach. In this paper, a new variation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1605.04989 شماره
صفحات -
تاریخ انتشار 2016