High-Performance Parallel Computations Using Python as High-Level Language

نویسندگان

  • Stefano Masini
  • Paolo Bientinesi
چکیده

High-performance and parallel computations have always represented a challenge in terms of code optimization and memory usage, and have typically been tackled with languages that allow a low-level management of resources, like Fortran, C and C++. Nowadays, most of the implementation effort goes into constructing the bookkeeping logic that binds together functionalities taken from standard libraries. Because of the increasing complexity of this kind of codes, it becomes more and more necessary to keep it well organized through proper software engineering practices. Indeed, in the presence of chaotic implementations, reasoning about correctness is difficult, even when limited to specific aspects like concurrency; moreover, due to the lack in flexibility of the code, making substantial changes for experimentation becomes a grand challenge. Since the bookkeeping logic only accounts for a tiny fraction of the total execution time, we believe that for such a task it can be afforded to introduce an overhead due to a high-level language. We consider Python as a preliminary candidate with the intent of improving code readability, flexibility and, in turn, the level of confidence with respect to correctness. In this study, the bookkeeping logic of SMP-MRRR, a C & Fortran highly optimized multi-core eigensolver, is ported to Python. We report here on the porting process and on the pros and cons of using a high-level language in a high-performance parallel library.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the performance of the Python programming language for serial and parallel scientific computations

This article addresses the performance of scientific applications that use the Python programming language. First, we investigate several techniques for improving the computational efficiency of serial Python codes. Then, we discuss the basic programming techniques in Python for parallelizing serial scientific applications. It is shown that an efficient implementation of the array-related opera...

متن کامل

Parallel processing of filtered queries in attributed semantic graphs

Execution of complex analytic queries on massive semantic graphs is a challenging problem in big-data analytics that requires high-performance parallel computing. In a semantic graph, vertices and edges carry attributes of various types and the analytic queries typically depend on the values of these attributes. Thus, the computation must view the graph through a filter that passes only those i...

متن کامل

Process-Oriented Parallel Programming with an Application to Data-Intensive Computing

We introduce process-oriented programming as a natural extension of object-oriented programming for parallel computing. It is based on the observation that every class of an object-oriented language can be instantiated as a process, accessible via a remote pointer. The introduction of process pointers requires no syntax extension, identifies processes with programming objects, and enables proce...

متن کامل

Using B SP and Python to simplify parallel programming

Scientific computing is usually associated with compiled languages for maximum efficiency. However, in a typical application program, only a small part of the code is time–critical and requires the efficiency of a compiled language. It is often advantageous to use interpreted high–level languages for the remaining tasks, adopting a mixed–language approach. This will be demonstrated for Python, ...

متن کامل

CUDA-level Performance with Python-level Productivity for Gaussian Mixture Model Applications

Typically, scientists with computational needs prefer to use high-level languages such as Python or MATLAB; however, large computationally-intensive problems must eventually be recoded in a low level language such as C or Fortran by expert programmers in order to achieve sufficient performance. In addition, multiple strategies may exist for mapping a problem onto parallel hardware; unless the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010