A novel flatworm-specific gene family implicated in reproduction in Macrostomum lignano

نویسندگان

  • Magda Grudniewska
  • Stijn Mouton
  • Margriet Grelling
  • Anouk H. G. Wolters
  • Jeroen Kuipers
  • Ben N. G. Giepmans
  • Eugene Berezikov
چکیده

Free-living flatworms, such as the planarian Schmidtea mediterranea, are extensively used as model organisms to study stem cells and regeneration. The majority of studies in planarians so far focused on broadly conserved genes. However, investigating what makes these animals different might be equally informative for understanding its biology. Here, we present a re-analysis of neoblast and germline transcriptional signatures in the flatworm M. lignano and combine it with the whole-animal electron microscopy atlas (nanotomy) as a reference platform for ultrastructural studies in M. lignano. We show that germline-enriched genes have a high fraction of flatworm-specific genes and identify Mlig-sperm1 gene as a member of a novel gene family conserved only in free-living flatworms and essential for producing healthy spermatozoa. This work demonstrates that investigation of flatworm-specific genes is crucial for understanding flatworm biology and establishes a basis for future research in this direction in M. lignano. . CC-BY-NC-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/167346 doi: bioRxiv preprint first posted online Jul. 22, 2017;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano

The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome ass...

متن کامل

Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology

Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and tools, makes it essential to have a detailed description of the chromosome organization of this ...

متن کامل

The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research

Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH, cell volume, and membrane potentials. Together with ion transporters and gap junction complexes,...

متن کامل

Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano.

We have isolated and identified the vasa homologue macvasa, expressed in testes, ovaries, eggs and somatic stem cells of the flatworm Macrostomum lignano. Molecular tools such as in situ hybridization and RNA interference were developed for M. lignano to study gene expression and function. Macvasa expression was followed during postembryonic development, regeneration and in starvation experimen...

متن کامل

The Hippo pathway regulates stem cells during homeostasis and regeneration of the flatworm Macrostomum lignano.

The Hippo pathway orchestrates activity of stem cells during development and tissue regeneration and is crucial for controlling organ size. However, roles of the Hippo pathway in highly regenerative organisms, such as flatworms, are unknown. Here we show that knockdown of the Hippo pathway core genes in the flatworm Macrostomum lignano affects tissue homeostasis and causes formation of outgrowt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017