Origins of multicellular evolvability in snowflake yeast
نویسندگان
چکیده
Complex life has arisen through a series of 'major transitions' in which collectives of formerly autonomous individuals evolve into a single, integrated organism. A key step in this process is the origin of higher-level evolvability, but little is known about how higher-level entities originate and gain the capacity to evolve as an individual. Here we report a single mutation that not only creates a new level of biological organization, but also potentiates higher-level evolvability. Disrupting the transcription factor ACE2 in Saccharomyces cerevisiae prevents mother-daughter cell separation, generating multicellular 'snowflake' yeast. Snowflake yeast develop through deterministic rules that produce geometrically defined clusters that preclude genetic conflict and display a high broad-sense heritability for multicellular traits; as a result they are preadapted to multicellular adaptation. This work demonstrates that simple microevolutionary changes can have profound macroevolutionary consequences, and suggests that the formation of clonally developing clusters may often be the first step to multicellularity.
منابع مشابه
Clonal development is evolutionarily superior to aggregation in wild-collected Saccharomyces cerevisiae
The vast majority of multicellular organisms develop clonally via ‘staying together’ after mitotic reproduction. Evolutionary theory predicts that cells staying together provides several key advantages over multicellular construction via cells ‘coming together’, but little empirical work has directly compared these developmental modes. In our previous work evolving multicellularity de novo in t...
متن کاملTempo and mode of multicellular adaptation in experimentally evolved Saccharomyces cerevisiae.
Multicellular complexity is a central topic in biology, but the evolutionary processes underlying its origin are difficult to study and remain poorly understood. Here we use experimental evolution to investigate the tempo and mode of multicellular adaptation during a de novo evolutionary transition to multicellularity. Multicelled "snowflake" yeast evolved from a unicellular ancestor after 7 da...
متن کاملApoptosis in snowflake yeast: novel trait, or side effect of toxic waste?
Recent experiments evolving de novo multicellularity in yeast have found that large cluster-forming genotypes also exhibit higher rates of programmed cell death (apoptosis). This was previously interpreted as the evolution of a simple form of cellular division of labour: apoptosis results in the scission of cell-cell connections, allowing snowflake yeast to produce proportionally smaller, faste...
متن کاملGeometry Shapes Evolution of Early Multicellularity
Organisms have increased in complexity through a series of major evolutionary transitions, in which formerly autonomous entities become parts of a novel higher-level entity. One intriguing feature of the higher-level entity after some major transitions is a division of reproductive labor among its lower-level units in which reproduction is the sole responsibility of a subset of units. Although ...
متن کاملCell Timer/Cell Clock
Like the biological clock in the body, replication of each cell type (even different cells of the same organism) follows a timing program. Abnormal function of this timer could be an alarm for a disease like cancer. DNA replication starts from a specific point on the chromosome that is called the origin of replication. In contrast to prokaryotes in which DNA replication starts from a single ...
متن کامل