Design of an H.264/AVC Decoder with Memory Hierarchy and Line-Pixel-Lookahead
نویسندگان
چکیده
This paper describes a novel memory hierarchy and line-pixel-lookahead (LPL) for an H.264/AVC video decoder. The memory system is the bottleneck of most video processors, particularly in the newly announced H.264/AVC. This is because it utilizes the neighboring pixels to create a reliable predictor, leading to a dependency on a long past history of data. This problem can be resolved by allocating memory space but inducing large silicon area and power consumption as well. We first review the existing solutions and propose a three-level memory hierarchy with line-pixel-lookahead to improve access efficiency. Three-level memory hierarchy includes registers, content/slice SRAM and external frame DRAM. We emphasize the need to consider the secondary hierarchy, content/slice SRAM, during the design of an H.264/AVC decoder. Specifically, we introduce a slice SRAM and line-pixel-lookahead to lower the memory capacity and external bandwidth. This SRAM stores neighboring pixels and prevents the data re-access from DRAM. Linepixel-lookahead exploits multi-dimensional pixel locality so as to averagely improve prediction performance by 6.54% compared to conventional vertical prediction. Simulation results also reveal that the proposal makes a better trade-off between memory allocation and external bandwidth as well as power, leading to 50% of memory power reduction compared to the design without exploiting the secondary slice SRAM hierarchy.
منابع مشابه
Memory Analysis for H.264/AVC Scalable Extension Decoder
In this paper, a systematic analysis for memory usage in H.264/AVC scalable extension (SVC) decoder is presented. This paper analyzes the memory requirements with three different decoding flows, macroblock, row and frame based, to find out a best method which can achieve optimal trade-off between internal memory usage and external memory access. The analysis shows that the SVC decoding needs 88...
متن کاملA Bandwidth Optimized, 64 Cycles/MB Joint Parameter Decoder Architecture for Ultra High Definition H.264/AVC Applications
In this paper, VLSI architecture of a joint parameter decoder is proposed to realize the calculation of motion vector (MV), intra prediction mode (IPM) and boundary strength (BS) for ultra high definition H.264/AVC applications. For this architecture, a 64-cycle-per-MB pipeline with simplified control modes is designed to increase system throughput and reduce hardware cost. Moreover, in order t...
متن کاملPipelining Architecture Design of the H.264/AVC [email protected] Codec For HD Applications
This paper presents the macroblock/slice level pipeline structure for an H.264/AVC [email protected] codec. In H.264/AVC, level 4.2 (L4.2) in high profile (HP) describes the encoding/decoding capability of 1920x1088@64p sequence/ bitstream of up to 62.5 Mbps. To meet this tremendous specification, the novel hardwired architecture of the H.264/AVC codec is also presented. It supports both encoding and dec...
متن کاملA low-power portable H.264/AVC decoder using elastic pipeline
We propose an elastic pipeline architecture that can apply dynamic voltage scaling (DVS) to a dedicated hardware, and implement the elastic pipeline to a portable H.264/AVC decoder LSI with embedded frame buffer SRAM. A supply voltage and operating frequency are decreased by a feedback-type voltage/frequency control algorithm. In a portable H.264/AVC decoder, embedded SARM can be utilized as fr...
متن کاملDesign of Low-Complexity Interpolator for Motion Compensation in H.264 decoder
The H.264 video coding standard is widely used due to the high compression rate and quality. The motion compensation is the most time-consuming and complex unit in the H.264 decoder. The performance of the motion compensation is determined by the calculation of pixel interpolation. The quarter-pixel interpolation is achieved using 6-tap horizontal or vertical FIR filters for luminance data and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing Systems
دوره 50 شماره
صفحات -
تاریخ انتشار 2008