Decompositions of Complete Multipartite Graphs into Gregarious 6-cycles Using Complete Differences

نویسندگان

  • Jung R. Cho
  • Ronald J. Gould
  • JUNG R. CHO
  • RONALD J. GOULD
چکیده

The complete multipartite graph Kn(2t) having n partite sets of size 2t, with n ≥ 6 and t ≥ 1, is shown to have a decomposition into gregarious 6-cycles, that is, the cycles which have at most one vertex from any particular partite set. Complete sets of differences of numbers in Zn are used to produce starter cycles and obtain other cycles by rotating the cycles around the n-gon of the partite sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-disjoint Decompositions of Complete Multipartite Graphs into Gregarious Long Cycles

The notion of gregarious cycles in complete multipartite graphs was introduced by Billington and Hoffman in 2003 and was modified later by Billington, Hoffman, and Rodger and by Billington, Smith, and Hoffman. In this paper, we propose a new definition of gregarious cycles in complete multipartite graphs which generalizes all of the three definitions. With our definition, we can consider gregar...

متن کامل

A Difference Set Method for Circular Decompositions of Complete Multipartite Graphs into Gregarious 4-cycles

A cycle in a multipartite graph G is gregarious if it contains at most one vertex from each partite set of G. The complete n-partite graph with partite sets of size m, denoted by Kn(m) is shown to have a decomposition into gregarious 4-cycles. The notion of a gregarious 4-cycle decomposition of this type was introduced in [3]. A 4-cycle decomposition of Kn(m) is circular if it is it is invarian...

متن کامل

Resolvable gregarious cycle decompositions of complete equipartite graphs

The complete multipartite graph Kn(m) with n parts of size m is shown to have a decomposition into n-cycles in such a way that each cycle meets each part of Kn(m); that is, each cycle is said to be gregarious. Furthermore, gregarious decompositions are given which are also resolvable. © 2007 Elsevier B.V. All rights reserved.

متن کامل

Some gregarious kite decompositions of complete equipartite graphs

A k-cycle decomposition of a multipartite graph G is said to be gregarious if each k-cycle in the decomposition intersects k distinct partite sets of G. In this paper we prove necessary and sufficient conditions for the existence of such a decomposition in the case where G is the complete equipartite graph, having n parts of size m, and either n ≡ 0, 1 (mod k), or k is odd and m ≡ 0 (mod k). As...

متن کامل

A Note on Decomposition of Complete Equipartite Graphs into Gregarious 6-cycles

In [8], it is shown that the complete multipartite graph Kn(2t) having n partite sets of size 2t, where n ≥ 6 and t ≥ 1, has a decomposition into gregarious 6-cycles if n ≡ 0, 1, 3 or 4 (mod 6). Here, a cycle is called gregarious if it has at most one vertex from any particular partite set. In this paper, when n ≡ 0 or 3 (mod 6), another method using difference set is presented. Furthermore, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008