An iterative method for solving KKT system of the semi-infinite programming
نویسندگان
چکیده
We develop an iterative method for solving the KKT system of the semi-infinite programming (SIP) problem. At each iteration, we solve the KKT system of a nonlinear programming problem with finite constraints by a semismooth Newton method. The algorithm either terminates at a KKT point of the SIP problem in finitely many iterations or generates an infinite sequence of iterates whose any accumulation point is a KKT point of the problem. We also analyse the convergence rate of the method. Preliminary numerical results are reported.
منابع مشابه
A numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملA new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by using semi-infinite linear programing
In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...
متن کاملA New Approach for Approximating Solution of Continuous Semi-Infinite Linear Programming
This paper describes a new optimization method for solving continuous semi-infinite linear problems. With regard to the dual properties, the problem is presented as a measure theoretical optimization problem, in which the existence of the solution is guaranteed. Then, on the basis of the atomic measure properties, a computation method was presented for obtaining the near optimal so...
متن کاملFirst order optimality conditions for generalized semi-infinite programming problems
In this paper we study first order optimality conditions for the class of generalized semi-infinite programming problems (GSIPs). We extend various wellknown constraint qualifications for finite programming problems to GSIPs and analyze the extent to which a corresponding Karush-Kuhn-Tucker (KKT) condition depends on these extensions. It is shown that in general the KKT condition for GSIPs take...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 20 شماره
صفحات -
تاریخ انتشار 2005