A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms

نویسندگان

  • Paul Barry
  • Martin Stynes
چکیده

We study integer sequences and transforms that operate on them. Many of these transforms are defined by triangular arrays of integers, with a particular focus on Riordan arrays and Pascal-like arrays. In order to explore the structure of these transforms, use is made of methods coming from the theory of continued fractions, hypergeometric functions, orthogonal polynomials and most importantly from the Riordan groups of matrices. We apply the Riordan array concept to the study of sequences related to graphs and codes. In particular, we study sequences derived from the cyclic groups that provide an infinite family of colourings of Pascal’s triangle. We also relate a particular family of Riordan arrays to the weight distribution of MDS error-correcting codes. The Krawtchouk polynomials are shown to give rise to many different families of Riordan arrays. We define and investigate Catalannumber-based transformations of integer sequences, as well as transformations based on Laguerre and related polynomials. We develop two new constructions of families of Pascallike number triangles, based respectively on the ordinary Riordan group and the exponential Riordan group, and we study the properties of sequences arising from these constructions, most notably the central coefficients and the generalized Catalan numbers associated to the triangles. New exponential-factorial constructions are developed to further extend this theory. The study of orthogonal polynomials such as those of Chebyshev, Hermite, Laguerre and Charlier are placed in the context of Riordan arrays, and new results are found. We also extend results on the Stirling numbers of the first and second kind, using exponential Riordan arrays. We study the integer Hankel transform of many families of integer sequences, exploring links to related orthogonal polynomials and their coefficient arrays. Two particular cases of power series inversion are studied extensively, leading to results concerning the Narayana triangles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms

In this note we explore the properties of a simply defined family of Riordan arrays [9]. The inverses of these arrays are closely related to well-known Catalan-defined matrices. This motivates us to study the Hankel transforms [6] of the images of some well-known families of sequences under the inverse matrices. This follows a general principle which states that the Hankel transform of the imag...

متن کامل

Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences

Using the language of Riordan arrays, we define a notion of generalized Bernstein polynomials which are defined as elements of certain Riordan arrays. We characterize the general elements of these arrays, and examine the Hankel transform of the row sums and the first columns of these arrays. We propose conditions under which these Hankel transforms possess the Somos-4 property. We use the gener...

متن کامل

Meixner-Type Results for Riordan Arrays and Associated Integer Sequences

We determine which (ordinary) Riordan arrays are the coefficient arrays of a family of orthogonal polynomials. In so doing, we are led to introduce a family of polynomials, which includes the Boubaker polynomials, and a scaled version of the Chebyshev polynomials, using the techniques of Riordan arrays. We classify these polynomials in terms of the Chebyshev polynomials of the first and second ...

متن کامل

On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays

We study a number of characteristics of the inverses of the elements of a family of Pascal-like matrices that are defined by Riordan arrays. We give several forms of the bivariate generating function of these inverses, along with four different closedform expressions for the general element of the inverse. We study the row sums and the diagonal sums of the inverses, and the first column sequenc...

متن کامل

General Eulerian Polynomials as Moments Using Exponential Riordan Arrays

Abstract Using the theory of exponential Riordan arrays and orthogonal polynomials, we demonstrate that the general Eulerian polynomials, as defined by Xiong, Tsao and Hall, are moment sequences for simple families of orthogonal polynomials, which we characterize in terms of their three-term recurrence. We obtain the generating functions of this polynomial sequence in terms of continued fractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009