Lipschitz Semigroup for an Integro–differential Equation for Slow Erosion

نویسندگان

  • RINALDO M. COLOMBO
  • GRAZIANO GUERRA
  • WEN SHEN
چکیده

In this paper we study an integro-differential equation describing granular flow dynamics with slow erosion. This nonlinear partial differential equation is a conservation law where the flux contains an integral term. Through a generalized wave front tracking algorithm, approximate solutions are constructed and shown to converge strongly to a Lipschitz semigroup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semigroup Approach to an Integro-Differential Equation Modeling Slow Erosion

The paper is concerned with a scalar conservation law with nonlocal flux, providing a model for granular flow with slow erosion and deposition. While the solution u = u(t, x) can have jumps, the inverse function x = x(t, u) is always Lipschitz continuous; its derivative has bounded variation and satisfies a balance law with measure-valued sources. Using a backward Euler approximation scheme com...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

Analytic-Approximate Solution For An Integro- Differential Equation Arising In Oscillating Magnetic Fields Using Homotopy Analysis Method

In this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. The homotopy analysis method (HAM) is used for solving this equation. Several examples are given to reconfirm the efficiency of these algorithms. The results of applying this procedure...

متن کامل

Front Tracing Approximations for Slow Erosion

In this paper we study an integro-differential equation that arises in modeling slow erosion of granular flow. We construct piecewise constant approximate solutions, using a front tracing technique. Convergence of the approximate solutions is established through proper a priori estimates, which in turn gives global existence of BV solutions. Furthermore, continuous dependence on initial data an...

متن کامل

Front Tracking Approximations for Slow Erosion

In this paper we study an integro-differential equation describing slow erosion, in a model of granular flow. In this equation the flux is non local and depends on x, t. We define approximate solutions by using a front tracking technique, adapted to this special equation. Convergence of the approximate solutions is established by means of suitable a priori estimates. In turn, these yield the gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011