Nucleolar AATF regulates c-Jun–mediated apoptosis
نویسندگان
چکیده
The AP-1 transcription factor c-Jun has been shown to be essential for stress-induced apoptosis in several models. However, the molecular mechanisms underlying the proapoptotic activity of c-Jun are poorly understood. We identify the apoptosis-antagonizing transcription factor (AATF) as a novel nucleolar stress sensor, which is required as a cofactor for c-Jun-mediated apoptosis. Overexpression or down-regulation of AATF expression levels led to a respective increase or decrease in the amount of activated and phosphorylated c-Jun with a proportional alteration in the induction levels of the proapoptotic c-Jun target genes FasL and TNF-α. Accordingly, AATF promoted commitment of ultraviolet (UV)-irradiated cells to c-Jun-dependent apoptosis. Whereas AATF overexpression potentiated UV-induced apoptosis in wild-type cells, c-Jun-deficient mouse embryonic fibroblasts were resistant to AATF-mediated apoptosis induction. Furthermore, AATF mutants defective in c-Jun binding were also defective in inducing AP-1 activity and c-Jun-mediated apoptosis. UV irradiation induced a translocation of AATF from the nucleolus to the nucleus, thereby enabling its physical association to c-Jun. Analysis of AATF deletion mutants revealed that the AATF domains required for compartmentalization, c-Jun binding, and enhancement of c-Jun transcriptional activity were all also required to induce c-Jun-dependent apoptosis. These results identify AATF as a nucleolar-confined c-Jun cofactor whose expression levels and spatial distribution determine the stress-induced activity of c-Jun and the levels of c-Jun-mediated apoptosis.
منابع مشابه
Human AATF/Che-1 forms a nucleolar protein complex with NGDN and NOL10 required for 40S ribosomal subunit synthesis
Mammalian AATF/Che-1 is essential for embryonic development, however, the underlying molecular mechanism is unclear. By immunoprecipitation of human AATF we discovered that AATF forms a salt-stable protein complex together with neuroguidin (NGDN) and NOL10, and demonstrate that the AATF-NGDN-NOL10 (ANN) complex functions in ribosome biogenesis. All three ANN complex members localize to nucleoli...
متن کاملTSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination.
Apoptosis-antagonizing transcription factor (AATF), also termed Che-1, was identified as interacting protein of Dlk/ZIP kinase and RNA polymerase II, respectively. Che-1 has additionally been shown to bind Rb, thereby activating transcription factor E2F and promoting cell cycle progression. Moreover, AATF enhances steroid receptor-mediated transactivation in a hormone- and dose-dependent manner...
متن کاملA Nucleolar Isoform of the Fbw7 Ubiquitin Ligase Regulates c-Myc and Cell Size
The human tumor suppressor Fbw7/hCdc4 functions as a phosphoepitope-specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination of cyclin E , Notch , c-Jun and c-Myc . Fbw7 loss in cancer may thus have profound effects on the pathways that govern cell division, differentiation, apoptosis, and cell growth. Fbw7-inactivating mutations occur in human tumor c...
متن کاملThe promyelocytic leukemia protein PML regulates c-Jun function in response to DNA damage.
The promyelocytic leukemia (PML) gene, a tumor suppressor inactivated in acute promyelocytic leukemia (APL), regulates apoptosis induced by DNA damage. However, the molecular mechanisms by which PML modulates apoptosis following genotoxic stress are only partially elucidated. PML is essential for p53-dependent induction of programmed cell death upon gamma-irradiation through PML-nuclear body (N...
متن کاملCeramide promotes apoptosis in lung cancer-derived A549 cells by a mechanism involving c-Jun NH2-terminal kinase.
Ceramide regulates diverse signaling pathways involving cell senescence, the cell cycle, and apoptosis. Ceramide is known to potently activate a number of stress-regulated enzymes, including the c-Jun NH(2)-terminal kinase (JNK). Although ceramide promotes apoptosis in human lung cancer-derived A549 cells, a role for JNK in this process is unknown. Here, we report that ceramide promotes apoptos...
متن کامل