Commutative saccadic generator is sufficient to control a 3-D ocular plant with pulleys.

نویسندگان

  • C Quaia
  • L M Optican
چکیده

One-dimensional models of oculomotor control rely on the fact that, when rotations around only one axis are considered, angular velocity is the derivative of orientation. However, when rotations around arbitrary axes [3-dimensional (3-D) rotations] are considered, this property does not hold, because 3-D rotations are noncommutative. The noncommutativity of rotations has prompted a long debate over whether or not the oculomotor system has to account for this property of rotations by employing noncommutative operators. Recently, Raphan presented a model of the ocular plant that incorporates the orbital pulleys discovered, and qualitatively modeled, by Miller and colleagues. Using one simulation, Raphan showed that the pulley model could produce realistic saccades even when the neural controller is commutative. However, no proof was offered that the good behavior of the Raphan-Miller pulley model holds for saccades different from those simulated. We demonstrate mathematically that the Raphan-Miller pulley model always produces movements that have an accurate dynamic behavior. This is possible because, if the pulleys are properly placed, the oculomotor plant (extraocular muscles, orbital pulleys, and eyeball) in a sense appears commutative to the neural controller. We demonstrate this finding by studying the effect that the pulleys have on the different components of the innervation signal provided by the brain to the extraocular muscles. Because the pulleys make the axes of action of the extraocular muscles dependent on eye orientation, the effect of the innervation signals varies correspondingly as a function of eye orientation. In particular, the Pulse of innervation, which in classical models of the saccadic system encoded eye velocity, here encodes a different signal, which is very close to the derivative of eye orientation. In contrast, the Step of innervation always encodes orientation, whether or not the plant contains pulleys. Thus the Step can be produced by simply integrating the Pulse. Particular care will be given to describing how the pulleys can have this differential effect on the Pulse and the Step. We will show that, if orbital pulleys are properly located, the neural control of saccades can be greatly simplified. Furthermore, the neural implementation of Listing's Law is simplified: eye orientation will lie in Listing's Plane as long as the Pulse is generated in that plane. These results also have implications for the surgical treatment of strabismus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions.

PURPOSE Connective tissue pulleys serve as the functional mechanical origins of the extraocular muscles (EOMs). Anterior to these pulleys, EOM paths shift with gaze to follow the scleral insertions, whereas posterior EOM paths are stable in the orbit. Inflections in EOM paths produced by gaze shifts can be used to define the functional location of pulleys in three dimensions (3-D). METHODS Co...

متن کامل

Modulation of saccade curvature by ocular counterroll.

PURPOSE On close inspection, it can be seen that most saccadic trajectories are not straight but curve slightly; in other words, they are not single-axis ocular rotations. The authors asked whether saccade curvatures are systematically influenced by static ocular counterroll (OCR). METHODS OCR was elicited by static whole-body roll position. Eight healthy human subjects performed horizontal a...

متن کامل

Active pulleys: magnetic resonance imaging of rectus muscle paths in tertiary gazes.

PURPOSE The orbital layer of each rectus extraocular muscle (EOM) inserts on connective tissue, and the global layer inserts on the eyeball. The active-pulley hypothesis (APH) proposes that a condensation of this connective tissue constitutes a pulley serving as the functional origin of the rectus EOM, and that this pulley makes coordinated, gaze-related translations along the EOM axis to imple...

متن کامل

Modeling and Control of 3d Eye Movement with Musculotendon Dynamics

Recent anatomical studies of extraocular muscles (EOM) demonstrate the stability of muscle paths. This is due to the fact that each rectus EOM passes through a pulley consisting of an encircling ring or sleeve of collagen. In this paper, the EOMs are modeled using the Hill type musculotendon complex and the effect of extraocular pulleys are studied. The model proposed by Martin and Schovanec in...

متن کامل

Current concepts of mechanical and neural factors in ocular motility.

PURPOSE OF REVIEW The oculomotor periphery was classically regarded as a simple mechanism executing complex behaviors specified explicitly by neural commands. A competing view has emerged that many important aspects of ocular motility are properties of the extraocular muscles and their associated connective tissue pulleys. This review considers current concepts regarding aspects of ocular motil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 6  شماره 

صفحات  -

تاریخ انتشار 1998