3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes
نویسندگان
چکیده
Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro.
منابع مشابه
Microvessel Structure Formation in a 3D Perfused Co-culture of Rat Hepatocytes and Liver Endothelial Cells
Many liver physiological and pathophysiological behaviors are not adequately captured by current in vitro hepatocyte culture methods. A 3D perfused microreactor previously demonstrated superior hepatic functional maintenance than conventional 2D cultures, and was hypothesized to provide an environment favorable to endothelial cell maintenance and morphogenesis. This dissertation focuses on char...
متن کاملAngiocrine signaling in the hepatic sinusoids in health and disease.
The capillary network irrigating the liver is important not only for nutrient and oxygen delivery, but also for the signals distributed to other hepatic cell types necessary to maintain liver homeostasis. During development, endothelial cells are a key component in liver zonation. In adulthood, they maintain hepatic stellate cells and hepatocytes in quiescence. Their importance in pathobiology ...
متن کاملMimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip.
Physiologically, four major types of hepatic cells - the liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes - reside inside liver sinusoids and interact with flowing peripheral cells under blood flow. It is hard to mimic an in vivo liver sinusoid due to its complex multiple cell-cell interactions, spatiotemporal construction, and mechanical microenvironme...
متن کاملRat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes.
Liver sinusoidal endothelial cells (SECs) are generally refractory to extended in vitro culture. In an attempt to recreate some features of the complex set of cues arising from the liver parenchyma, we cocultured adult rat liver SECs, identified by the expression of the marker SE-1, with primary adult rat hepatocytes in a 3D culture system that provides controlled microscale perfusion through t...
متن کاملHuman Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection
Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding ...
متن کامل