Measures of observation impact in non-Gaussian data assimilation
نویسنده
چکیده
Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the Geosciences as the resolution and non-linearity of models are increased and more and more non-linear observation operators are being used. In this study, we look at the effect of relaxing the assumption of a Gaussian prior on the impact of observations within the data assimilation system. Three different measures of observation impact are studied: the sensitivity of the posterior mean to the observations, mutual information and relative entropy. The sensitivity of the posterior mean is derived analytically when the prior is modelled by a simplified Gaussian mixture and the observation errors are Gaussian. It is found that the sensitivity is a strong function of the value of the observation and proportional to the posterior variance. Similarly, relative entropy is found to be a strong function of the value of the observation. However, the errors in estimating these two measures using a Gaussian approximation to the prior can differ significantly. This hampers conclusions about the effect of the non-Gaussian prior on observation impact. Mutual information does not depend on the value of the observation and is seen to be close to its Gaussian approximation. These findings are illustrated with the particle filter applied to the Lorenz ’63 system. This article is concluded with a discussion of the appropriateness of these measures of observation impact for different situations.
منابع مشابه
Observation impact in data assimilation: the effect of non-Gaussian observation error
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect...
متن کاملObservation impact in data assimilation: the effect of non-Gaussian observation error
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect...
متن کاملObservation impact in data assimilation: the effect of non-Gaussian observation
Data assimilation methods which avoid the assumption of Gaussian error statistics are being developed for geoscience applications. We investigate how the relaxation of the Gaussian assumption affects the impact observations have within the assimilation process. The effect of non-Gaussian observation error (described by the likelihood) is compared to previously published work studying the effect...
متن کاملA Sampling Filter for Non-Gaussian Data Assimilation
Data Assimilation in operational models like atmospheric or Ocean models is almost impossible without posing many assumptions due to the complication of the model that is usually very high-dimensional and also due to non-linearity of the observation operator used to map the state space to the measurement space. Ensemble Kalman filter (EnKF) is the most popular ensemble-based data assimilation a...
متن کاملModelling non-Gaussianity of background and observational errors by the Maximum Entropy method
The Best Linear Unbiased Estimator (BLUE) has widely been used in atmospheric and oceanic data assimilation (DA). However, when the errors from data (observations and background forecasts) have non-Gaussian probability density functions (pdfs), the BLUE differs from the absolute Minimum Variance Unbiased Estimator (MVUE), minimizing the mean square a posteriori error. The non-Gaussianity of err...
متن کامل