Approximation order from Stability of nonlinear Subdivision Schemes
نویسنده
چکیده
This paper proves approximation order properties of various nonlinear subdivision schemes. Building on some recent results on the stability of nonlinear multiscale transformations, we are able to give very short and concise proofs. In particular we point out an interesting connection between stability properties and approximation order of nonlinear subdivision schemes.
منابع مشابه
Approximation order from stability for nonlinear subdivision schemes
This paper proves approximation order properties of various nonlinear subdivision schemes. Building on some recent results on the stability of nonlinear multiscale transformations, we are able to give very short and concise proofs. In particular we point out an interesting connection between stability properties and approximation order of nonlinear subdivision schemes.
متن کاملStability of subdivision schemes
The stability of stationary interpolatory subdivision schemes for univariate data is investigated. If the subdivision scheme is linear, its stability follows from the convergence of the scheme, but for nonlinear subdivision schemes one needs stronger conditions and the stability analysis of nonlinear schemes is more involved. Apart from the fact that it is natural to demand that subdivision sch...
متن کاملApproximation order of interpolatory nonlinear subdivision schemes
Linear interpolatory subdivision schemes of C smoothness have approximation order at least r + 1. The present paper extends this result to nonlinear univariate schemes which are in proximity with linear schemes in a certain specific sense. The results apply to nonlinear subdivision schemes in Lie groups and in surfaces which are obtained from linear subdivision schemes. We indicate how to exten...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملMonotonicity preserving interpolatory subdivision schemes
A class of local nonlinear stationary subdivision schemes that interpolate equidistant data and that preserve monotonicity in the data is examined. The limit function obtained after repeated application of these schemes exists and is monotone for arbitrary monotone initial data. Next a class of rational subdivision schemes is investigated. These schemes generate limit functions that are continu...
متن کامل