Brownian Motion and Harmonic Analysis on Sierpinski Carpets

نویسندگان

  • Martin T. Barlow
  • Richard F. Bass
چکیده

We consider a class of fractal subsets of Rd formed in a manner analogous to the construction of the Sierpinski carpet. We prove a uniform Harnack inequality for positive harmonic functions; study the heat equation, and obtain upper and lower bounds on the heat kernel which are, up to constants, the best possible; construct a locally isotropic diffusion X and determine its basic properties; and extend some classical Sobolev and Poincaré inequalities to this setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling and Harnack Inequalities for Sierpinski Carpets

Uniform Harnack inequalities for harmonic functions on the preand graphical Sierpinski carpets are proved using a probabilistic coupling argument. Various results follow from this, including the construction of Brownian motion on Sierpinski carpets embedded in Md , d > 3, estimates on the fundamental solution of the heat equation, and Sobolev and Poincaré inequalities. The Sierpinski carpets (S...

متن کامل

Uniqueness of Brownian motion on Sierpinski carpets

We prove that, up to scalar multiples, there exists only one local regular Dirichlet form on a generalized Sierpinski carpet that is invariant with respect to the local symmetries of the carpet. Consequently for each such fractal the law of Brownian motion is uniquely determined and the Laplacian is well defined. Research partially supported by NSERC (Canada), and EPSRC (UK). Research partially...

متن کامل

Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum

We consider a class of Gibbs measures on self-affine Sierpinski carpets and perform the multifractal analysis of its elements. These deterministic measures are Gibbs measures associated with bundle random dynamical systems defined on probability spaces whose geometrical structure plays a central rôle. A special subclass of these measures is the class of multinomial measures on Sierpinski carpet...

متن کامل

Asymptotically one-dimensional diffusion on the Sierpinski gasket and multi-type branching processes with varying environment

Asymptotically one-dimensional diffusions on the Sierpinski gasket constitute a one parameter family of processes with significantly different behaviour to the Brownian motion. Due to homogenization effects they behave globally like the Brownian motion, yet locally they have a preferred direction of motion. We calculate the spectral dimension for these processes and obtain short time heat kerne...

متن کامل

A trace theorem for Dirichlet forms on fractals

We consider a trace theorem for self-similar Dirichlet forms on self-similar sets to self-similar subsets. In particular, we characterize the trace of the domains of Dirichlet forms on the Sierpinski gaskets and the Sierpinski carpets to their boundaries, where boundaries mean the triangles and rectangles which confine gaskets and carpets. As an application, we construct diffusion processes on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999