On Finite Arithmetic Simplicial Complexes
نویسندگان
چکیده
We compute the Euler-Poincaré characteristic of quotients of the Bruhat-Tits building of PGL(n) under the action of arithmetic groups arising from central division algebras over rational function fields of positive characteristic. We use this result to determine the structure of the quotient simplicial complex in certain cases.
منابع مشابه
Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملThe extremal symmetry of arithmetic simplicial complexes
Let K be a nonarchimedean local field, for example the p-adic numbers Qp (char(K) = 0) or the field of Laurent series over a finite field Fp((t)) (char(p) > 0) . Let G = PGLn(K), or more generally the K-points of any absolutely simple, connected, algebraic K-group of adjoint form. There is a natural way to associate to each cocompact lattice Γ in G a finite simplicial complex BΓ, as follows. Br...
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کامل