A modified TSVD method for discrete ill-posed problems

نویسندگان

  • SILVIA NOSCHESE
  • LOTHAR REICHEL
  • L. Reichel
چکیده

Truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-posed problems with a small to moderately sized matrix A. Regularization is achieved by replacing the matrix A by its best rank-k approximant, which we denote by Ak. The rank may be determined in a variety of ways, e.g., by the discrepancy principle or the L-curve criterion. This paper describes a novel regularization approach, in which A is replaced by the closest matrix in a unitarily invariant matrix norm with the same spectral condition number as Ak. Computed examples illustrate that this regularization approach often yields approximate solutions of higher quality than the replacement of A by Ak.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extrapolated Tsvd Method for Linear Discrete Ill-posed Problems with Kronecker Structure

This paper describes a new numerical method for the solution of large linear discrete ill-posed problems, whose matrix is a Kronecker product. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel. The available data (right-hand side) of many linear discrete ill-posed problems that aris...

متن کامل

On regularizing effects of MINRES and MR-II for large scale symmetric discrete ill-posed problems

Abstract. For large-scale symmetric discrete ill-posed problems, MINRES and MR-II are commonly used iterative solvers. In this paper, we analyze their regularizing effects. We first prove that the regularized solutions by MINRES have filtered SVD forms. Then we show that (i) a hybrid MINRES that uses explicit regularization within projected problems is generally needed to compute a best possibl...

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Computation of Regularization Parameters Using the Fourier Coefficients

In the solution of ill-posed problems by means of regularization methods, a crucial issue is the computation of the regularization parameter. In this work, we focus on the Truncated Singular Value Decomposition (TSVD) and Tikhonov method, and we define a method for computing the regularization parameter based on the behavior of Fourier coefficients. We compute a safe index for truncating the TS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013