Effects of horizontal cell network architecture on signal spread in the turtle outer retina. experiments and simulations
نویسندگان
چکیده
In the Pseudemys turtle retina five functionally distinct, electrically coupled networks of horizontal cells distribute signals in the outer plexiform layer. These networks differ significantly in their architecture, as determined by intracellular labeling with Neurobiotin after physiological recording and identification. The density of H1 horizontal cells is highest, ranging around 1800 cells/mm2 at approximately 2.3 mm eccentricity. H1 horizontal cell somata are connected via 6-10 thin, short dendrites. The H1 horizontal cell axon terminal network is composed of thick axon terminals, forming a three-dimensional, sheath-like structure. Networks of coupled H2 and H3 horizontal cells have cell densities of around 210 cells/mm2 and 350 cells/mm2, respectively, at the same eccentricity of 2.3 mm. Cell bodies are connected with 6-12 long, thin dendrites. Here we report for the first time H4 horizontal cell networks. Cell density is approximately 970 cells/mm2 at 2 mm eccentricity, and cell bodies are connected with 6-10 thin, short dendrites. General properties of passive voltage spread were compared for three of these horizontal cell networks using NeuronC. Realistic network architectures were obtained by digitizing the intracellularly labeled networks, respectively. One network obtained from coupled H1 horizontal cell bodies, one from coupled H1 horizontal cell axon terminals, and one from H2 horizontal cells were simulated. These three realistic networks were compared with an artificial, electrically coupled regular triangular network. Passive signal spread in these networks strongly depended on the exact network architecture using otherwise identical parameters. Changes in coupling strength affected signal spread in these networks differently. As in the experimental situation, changes in synaptic conductance influenced signal spread. Some principal effects of extensively coupled horizontal cells on photoreceptor signal processing were simulated with one type of photoreceptor connected by telodendria, synapsing onto an underlying triangular network and receiving feedback synapses. Under certain conditions, spatial information is coded in single photoreceptors. This was also the case in the experimental situation. In the simulation, spatial filter adjustment for optimal spatial coding in photoreceptors can be achieved by changing coupling strength in the horizontal cell network.
منابع مشابه
Linear information processing in the retina: a study of horizontal cell responses.
A basic question about visual perception is whether the retina produces a faithful or a distorted neural representation of the visual image. It is now well known that in some retinal pathways there are significant nonlinear transductions which distort the neural image. The next natural question is, What are the locations of the nonlinear stages within the retinal network? We report here on an i...
متن کاملAsymmetrical dynamics of voltage spread in retinal horizontal cell networks.
Lateral voltage spread in electrically coupled retinal horizontal cell networks is the substrate of center-surround antagonism in bipolar and ganglion cells. We studied its spatial and temporal properties in more detail in turtle L1 horizontal cells by using a contrast border as light stimulus. Experimental data were contrasted with expectations from a linear continuum model to specify the impa...
متن کاملExperimental and Neural Network Prediction of Elongation and Spread after First Stage of Fullering
Fullering process is a type of open die forging. In this research, elongation and maximum sideways spread in final shape of a billet after the first blow of a fullering process are predicted by designing a back propagation multilayer perceptron neural network. Several experiments are conducted using lead as the model material. Billets with three different square cross-sections are used in these...
متن کاملEffects of Nitric Oxide on the Horizontal Cell Network and Dopamine Release in the Carp Retina
In the teleost retina the intercellular messenger nitric oxide can be synthesized by several cell types including cone photoreceptors and H1 horizontal cells, indicating a modulatory role within the outer plexiform layer, the first stage of the visual information processing. Therefore, the aim of this study was to elucidate the effects of nitric oxide on the physiology of cone horizontal cells ...
متن کاملDynamic Analysis and Optimal Design of FLPSS for Power Network Connected Solid Oxide Fuel Cell Using of PSO
This paper studies the theory and modeling manner of solid oxide fuel cell (SOFC) into power network and its effect on small signal stability. The paper demonstrates the fundamental module, mathematical analysis and small signal modeling of the SOFC connected to single machine infinite bus (SMIB) system. The basic contribution of the study is to attenuate the low frequency oscillations by optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 36 شماره
صفحات -
تاریخ انتشار 1996