Non-commutative Residuated Lattices*
نویسنده
چکیده
Introduction and summary. In the theory of non-commutative rings certain distinguished subrings, one-sided and two-sided ideals, play the important roles. Ideals combine under crosscut, union and multiplication and hence are an instance of a lattice over which a non-commutative multiplication is defined.f The investigation of such lattices was begun by W. Krull (Krull [3]) who discussed decomposition into isolated component ideals. Our aim in this paper differs from that of Krull in that we shall be particularly interested in the lattice structure of these domains although certain related arithmetical questions are discussed. In Part I the properties of non-commutative multiplication and residuation over a lattice are developed. In particular it is shown that under certain general conditions each operation may be defined in terms of the other. The second division of the paper deals with the structure of non-commutative residuated lattices in the vicinity of the unit element. It is found that this structure may be characterized to a large extent in terms of special types of distributive lattices (arithmetical and semi-arithmetical lattices). The next division contains a discussion of the arithmetical properties of noncommutative residuated lattices. In particular decompositions into primary and semi-primary elements are discussed. Finally we investigate the case where both the ascending and descending chain conditions hold and prove some structure theorems which are analogous to the structure theorems of hypercomplex systems.
منابع مشابه
DIRECTLY INDECOMPOSABLE RESIDUATED LATTICES
The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...
متن کاملFUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملMinimal varieties of residuated lattices
In this paper we investigate the atomic level in the lattice of subvarieties of residuated lattices. In particular, we give infinitely many commutative atoms and construct continuum many non-commutative, representable atoms that satisfy the idempotent law; this answers Problem 8.6 of [12]. Moreover, we show that there are only two commutative idempotent atoms and only two cancellative atoms. Fi...
متن کاملClasses of residuated lattices
The commutative residuated lattices were first introduced by M. Ward and R.P. Dilworth as generalization of ideal lattices of rings. Non-commutative residuated lattices, called sometimes pseudo-residuated lattices, biresiduated lattices or generalized residuated lattices are algebraic counterpart of substructural logics, that is, logics which lack some of the three structural rules, namely cont...
متن کاملIndependent definition of reticulations on residuated lattices
A notion of reticulation which provides topological properties on algebras has introduced on commutative rings in 1980 by Simmons in [5]. For a given commutative ring A, a pair (L, λ) of a bounded distributive lattice and a mapping λ : A → L satisfying some conditions is called a reticulation on A, and the map λ gives a homeomorphism between the topological space Spec(A) consisting of prime fil...
متن کامل