Sensory nerves and nitric oxide contribute to reflex cutaneous vasodilation in humans.

نویسنده

  • Brett J Wong
چکیده

We tested the hypothesis that inhibition of cutaneous sensory nerves would attenuate reflex cutaneous vasodilation in response to an increase in core temperature. Nine subjects were equipped with four microdialysis fibers on the forearm. Two sites were treated with topical anesthetic EMLA cream for 120 min. Sensory nerve inhibition was verified by lack of sensation to a pinprick. Microdialysis fibers were randomly assigned as 1) lactated Ringer (control); 2) 10 mM nitro-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase; 3) EMLA + lactated Ringer; and 4) EMLA + L-NAME. Laser-Doppler flowmetry was used as an index of skin blood flow, and blood pressure was measured via brachial auscultation. Subjects wore a water-perfused suit, and oral temperature was monitored as an index of core temperature. The suit was perfused with 50°C water to initiate whole body heat stress to raise oral temperature 0.8°C above baseline. Cutaneous vascular conductance (CVC) was calculated and normalized to maximal vasodilation (%CVC(max)). There was no difference in CVC between control and EMLA sites (67 ± 5 vs. 69 ± 6% CVC(max)), but the onset of vasodilation was delayed at EMLA compared with control sites. The L-NAME site was significantly attenuated compared with control and EMLA sites (45 ± 5% CVC(max); P < 0.01). Combined EMLA + L-NAME site (25 ± 6% CVC(max)) was attenuated compared with control and EMLA (P < 0.001) and L-NAME only (P < 0.01). These data suggest cutaneous sensory nerves contribute to reflex cutaneous vasodilation during the early, but not latter, stages of heat stress, and full expression of reflex cutaneous vasodilation requires functional sensory nerves and NOS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges.

This review focuses on the neural and local mechanisms that have been demonstrated to effect cutaneous vasodilation and vasoconstriction in response to heat and cold stress in vivo in humans. First, our present understanding of the mechanisms by which sympathetic cholinergic nerves mediate cutaneous active vasodilation during reflex responses to whole body heating is discussed. These mechanisms...

متن کامل

Invited Review HIGHLIGHTED TOPIC A Physiological Systems Approach to Human and Mammalian Thermoregulation In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges

Kellogg, D. L., Jr. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol 100: 1709–1718, 2006; doi:10.1152/japplphysiol.01071.2005.—This review focuses on the neural and local mechanisms that have been demonstrated to effect cutaneous vasodilation and vasoconstriction in response to heat and cold stress in vivo in humans....

متن کامل

A Physiological Systems Approach to Human and Mammalian Thermoregulation In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges

Kellogg, D. L., Jr. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol 100: 1709–1718, 2006; doi:10.1152/japplphysiol.01071.2005.—This review focuses on the neural and local mechanisms that have been demonstrated to effect cutaneous vasodilation and vasoconstriction in response to heat and cold stress in vivo in humans....

متن کامل

Skin blood flow in adult human thermoregulation: how it works, when it does not, and why.

The thermoregulatory control of human skin blood flow is vital to the maintenance of normal body temperatures during challenges to thermal homeostasis. Sympathetic neural control of skin blood flow includes the noradrenergic vasoconstrictor system and a sympathetic active vasodilator system, the latter of which is responsible for 80% to 90% of the substantial cutaneous vasodilation that occurs ...

متن کامل

Local thermal control of the human cutaneous circulation.

The level of skin blood flow is subject to both reflex thermoregulatory control and influences from the direct effects of warming and cooling the skin. The effects of local changes in temperature are capable of maximally vasoconstricting or vasodilating the skin. They are brought about by a combination of mechanisms involving endothelial, adrenergic, and sensory systems. Local warming initiates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 304 8  شماره 

صفحات  -

تاریخ انتشار 2013