Effects of the strain-hardening exponent on two-parameter characterizations of surface-cracks under large-scale yielding
نویسندگان
چکیده
Article history: Received 29 June 2010 Received in final revised form 9 September 2010 Available online 30 October 2010
منابع مشابه
An Investigation Into the Effects of Friction and Anisotropy Coefficients and Work Hardening Exponent on Deep Drawing With FEM
Large strains, anisotropy of mechanical properties of materials and Coulomb friction in contact regions are some properties in the analysis of deep drawing process. In this research, the effects of different parameters such as anisotropy coefficient, work hardening exponent and friction coefficient on deep drawing process of drawing quality steel are studied. For this purpose, the finite elemen...
متن کاملConstraint effect on the near tip stress fields due to difference in plastic work hardening for bi-material interface cracks in small scale yielding
The change in near-tip stress field in Small Scale Yielding (SSY) for cracks located at an interface between two materials with different plastic work hardening is investigated. The difference in hardening is termed hardening mismatch, and is quantified through the parameter n, which is the difference in hardening exponent between the two materials. For cracks in elastic-ideally plastic materia...
متن کاملNumerical Study of the Effect of Materials’ Plastic Behavior on Equibiaxial Residual Stress Measurement Using Indentation
Indentation is a new method for estimating residual stress. The plastic behavior of the materials under study can affect indentation parameters and, thus, influences the results of residual stress measurement. In this paper, the effect of yield stress and work-hardening exponent on the accuracy of residual stress measurements in steels and aluminums was studied. Results showed that, for m...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملEFFECT OF SILICON CONTENT ON THE STRAIN HARDENING OF DUAL-PHASE STEELS
Abstract: In the current work, the strain hardening behavior of dual-phase steels with different silicon content (0.34- 2.26 Wt. %) was examined using the modified Crussard-Jaoul analysis. It was shown that these dual-phase steels deform in two stages over a uniform strain range. Each stage exhibited a different strain hardening exponent varying with silicon content. At the first stage, work...
متن کامل