Query-Based Outlier Detection in Heterogeneous Information Networks

نویسندگان

  • Jonathan Kuck
  • Honglei Zhuang
  • Xifeng Yan
  • Hasan Çam
  • Jiawei Han
چکیده

Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

Mining Cuboid Outliers in Information Networks

The study of complex networks or graphs has been extensively pursued by researchers from multiple disciplines. In history, the well-known “Seven Bridges of Koenigsberg” problem is the first real-world problem that was solved by the study of networks. Since then, there has been significant theoretical advancement in this area. Network science has been explored in diverse fields such as sociology...

متن کامل

Community Distribution Outlier Detection in Heterogeneous Information Networks

Heterogeneous networks are ubiquitous. For example, bibliographic data, social data, medical records, movie data and many more can be modeled as heterogeneous networks. Rich information associated with multi-typed nodes in heterogeneous networks motivates us to propose a new definition of outliers, which is different from those defined for homogeneous networks. In this paper, we propose the nov...

متن کامل

Community-based Outlier Detection for Edge-attributed Graphs

The study of networks has emerged in diverse disciplines as a means of analyzing complex relationship data. Beyond graph analysis tasks like graph query processing, link analysis, influence propagation, there has recently been some work in the area of outlier detection for information network data. Although various kinds of outliers have been studied for graph data, there is not much work on an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015