A molecular image-directed, 3D ultrasound-guided biopsy system for the prostate
نویسندگان
چکیده
Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this biopsy approach uses two-dimensional (2D) ultrasound images to guide biopsy and can miss up to 30% of prostate cancers. We are developing a molecular image-directed, three-dimensional (3D) ultrasound image-guided biopsy system for improved detection of prostate cancer. The system consists of a 3D mechanical localization system and software workstation for image segmentation, registration, and biopsy planning. In order to plan biopsy in a 3D prostate, we developed an automatic segmentation method based wavelet transform. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed image registration methods to fuse TRUS and PET/CT images. The segmentation method was tested in ten patients with a DICE overlap ratio of 92.4% ± 1.1 %. The registration method has been tested in phantoms. The biopsy system was tested in prostate phantoms and 3D ultrasound images were acquired from two human patients. We are integrating the system for PET/CT directed, 3D ultrasound-guided, targeted biopsy in human patients.
منابع مشابه
A PET/CT Directed, 3D Ultrasound-Guided Biopsy System for Prostate Cancer
Prostate cancer affects 1 in 6 men in the USA. Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this "blind" biopsy approach can miss at least 20% of prostate cancers. In this study, we are developing a PET/CT directed, 3D ultrasound image-guided biopsy system for improved detection of prostate cancer. In order...
متن کاملRotationally resliced 3D prostate TRUS segmentation using convex optimization with shape priors.
PURPOSE Efficient and accurate segmentations of 3D end-firing transrectal ultrasound (TRUS) images play an important role in planning of 3D TRUS guided prostate biopsy. However, poor image quality of the input 3D TRUS images, such as strong imaging artifacts and speckles, often makes it a challenging task to extract the prostate boundaries accurately and efficiently. METHODS In this paper, th...
متن کاملMRI and ultrasound-guided prostate biopsy using soft image fusion.
OBJECTIVES Transrectal ultrasound (TRUS)-guided random biopsies is the gold standard when diagnosing prostate cancer. A new 3D system with organ tracking, allows accurate targeted biopsies using magnetic resonance imaging (MRI) and TRUS soft image fusion. The aim of the study was to evaluate the accuracy of targeted biopsies. MATERIALS AND METHODS Retrospective study of 90 consecutive patient...
متن کاملTowards 3D Ultrasound Image Based Soft Tissue Tracking: A Transrectal Ultrasound Prostate Image Alignment System
The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make ...
متن کاملClosed-Loop Control in Fused MR-TRUS Image-Guided Prostate Biopsy
Multi-modality fusion imaging for targeted prostate biopsy is difficult because of prostate motion during the biopsy procedure. A closed-loop control mechanism is proposed to improve the efficacy and safety of the biopsy procedure, which uses real-time ultrasound and spatial tracking as feedback to adjust the registration between a preoperative 3D image (e.g. MRI) and real-time ultrasound image...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of SPIE--the International Society for Optical Engineering
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012